【Codeforces666E】Forensic Examination 后缀自动机 + 线段树合并
E. Forensic Examination
The country of Reberland is the archenemy of Berland. Recently the authorities of Berland arrested a Reberlandian spy who tried to bring the leaflets intended for agitational propaganda to Berland illegally . The most leaflets contain substrings of the Absolutely Inadmissible Swearword and maybe even the whole word.
Berland legal system uses the difficult algorithm in order to determine the guilt of the spy. The main part of this algorithm is the following procedure.
All the m leaflets that are brought by the spy are numbered from 1 to m. After that it's needed to get the answer to q queries of the following kind: "In which leaflet in the segment of numbers [l, r] the substring of the Absolutely Inadmissible Swearword [pl, pr] occurs more often?".
The expert wants you to automate that procedure because this time texts of leaflets are too long. Help him!
The first line contains the string s (1 ≤ |s| ≤ 5·105) — the Absolutely Inadmissible Swearword. The string s consists of only lowercase English letters.
The second line contains the only integer m (1 ≤ m ≤ 5·104) — the number of texts of leaflets for expertise.
Each of the next m lines contains the only string ti — the text of the i-th leaflet. The sum of lengths of all leaflet texts doesn't exceed 5·104. The text of the leaflets consists of only lowercase English letters.
The next line contains integer q (1 ≤ q ≤ 5·105) — the number of queries for expertise.
Finally, each of the last q lines contains four integers l, r, pl, pr (1 ≤ l ≤ r ≤ m, 1 ≤ pl ≤ pr ≤ |s|), where |s| is the length of the Absolutely Inadmissible Swearword.
Print q lines. The i-th of them should contain two integers — the number of the text with the most occurences and the number of occurences of the substring [pl, pr] of the string s. If there are several text numbers print the smallest one.
suffixtree
3
suffixtreesareawesome
cartesiantreeisworsethansegmenttree
nyeeheeheee
2
1 2 1 10
1 3 9 10
1 1
3 4
Solution
题目大意:给出一个模板串S和M个特殊串,每次询问S的[l,r]这个子串出现在编号为[pl,pr]的特殊串中最多出现次数以及其编号。
显然可以把所有串连起来建后缀自动机。
对于每个特殊串的节点,可以认为它包含一种颜色,然后查询操作实际上就是查询一个子树颜色数。
这个可以从叶子节点利用线段树合并得到;
总的复杂度是$O(NlogN)$
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} #define MAXN 500010
#define MAXS 1230010 int N,M,Q,pos[MAXN]; char S[MAXN],s[MAXN]; int root=1,sz=1,last=1,par[MAXS],son[MAXS][27],len[MAXS],st[MAXS],id[MAXS];
inline void Extend(int c)
{
int cur=++sz,p=last;
len[cur]=len[p]+1;
while (p && !son[p][c]) son[p][c]=cur,p=par[p];
if (!p) par[cur]=root;
else {
int q=son[p][c];
if (len[p]+1==len[q]) par[cur]=q;
else {
int nq=++sz;
memcpy(son[nq],son[q],sizeof(son[nq]));
len[nq]=len[p]+1; par[nq]=par[q];
while (p && son[p][c]==q) son[p][c]=nq,p=par[p];
par[q]=par[cur]=nq;
}
}
last=cur;
} inline void Sort()
{
for (int i=0; i<=sz; i++) st[i]=0;
for (int i=1; i<=sz; i++) st[len[i]]++;
for (int i=0; i<=sz; i++) st[i]+=st[i-1];
for (int i=1; i<=sz; i++) id[st[len[i]]--]=i;
} #define Pa pair<int,int>
#define MP make_pair
#define Max first
#define Id second struct SgtNode{
Pa key;
int lson,rson;
}tree[MAXS*23]; inline Pa operator * (const Pa & A,const Pa &B) {return A.Max==B.Max? (A.Id<B.Id? A:B):(A.Max>B.Max? A:B);} inline Pa operator + (const Pa & A,const Pa &B) {return MP(A.Max+B.Max,A.Id);} int cnt,roots[MAXS],father[21][MAXS];
inline void Insert(int &x,int val,int l,int r)
{
if(!x) x=++cnt;
if (l==r) {tree[x].key.Max++,tree[x].key.Id=l; return;}
int mid=(l+r)>>1;
if (val<=mid) Insert(tree[x].lson,val,l,mid);
else Insert(tree[x].rson,val,mid+1,r);
tree[x].key=tree[tree[x].lson].key * tree[tree[x].rson].key;
} inline int Merge(int x,int y,int l,int r)
{
if (!x || !y) return x|y;
int z=++cnt;
if (l==r) {
tree[z].key=tree[x].key+tree[y].key;
return z;
}
int mid=(l+r)>>1;
tree[z].lson=Merge(tree[x].lson,tree[y].lson,l,mid);
tree[z].rson=Merge(tree[x].rson,tree[y].rson,mid+1,r);
tree[z].key=tree[tree[z].lson].key * tree[tree[z].rson].key;
return z;
} inline Pa Query(int x,int l,int r,int L,int R)
{
if (!x) return MP(0,0);
if (L<=l && R>=r) return tree[x].key;
int mid=(l+r)>>1;
if (R<=mid) return Query(tree[x].lson,l,mid,L,R);
else if (L>mid) return Query(tree[x].rson,mid+1,r,L,R);
else return Query(tree[x].lson,l,mid,L,mid) * Query(tree[x].rson,mid+1,r,mid+1,R);
} inline int Get(int l,int r)
{
int Len=r-l+1,x=pos[r];
for (int i=20; i>=0; i--)
if (len[father[i][x]]>=Len)
x=father[i][x];
return x;
} int main()
{
scanf("%s",S+1); N=strlen(S+1);
for (int i=1; i<=N; i++) Extend(S[i]-'a'),pos[i]=last;
Extend(26);
M=read();
for (int j=1; j<=M; j++) {
scanf("%s",s+1); int le=strlen(s+1);
for (int i=1; i<=le; i++) {
Extend(s[i]-'a'),Insert(roots[last],j,1,M);
}
Extend(26);
} Sort(); for (int i=sz; i>=1; i--) {
int x=id[i];
if (par[x]) roots[par[x]]=Merge(roots[par[x]],roots[x],1,M);
} for (int i=1; i<=sz; i++) father[0][i]=par[i]; for (int j=1; j<=20; j++)
for (int i=1; i<=sz; i++)
father[j][i]=father[j-1][father[j-1][i]]; Q=read();
while (Q--) {
int l=read(),r=read(),pl=read(),pr=read();
int x=Get(pl,pr);
Pa ans=Query(roots[x],1,M,l,r);
if (!ans.Max) printf("%d %d\n",l,0);
else printf("%d %d\n",ans.Id,ans.Max);
} return 0;
}
【Codeforces666E】Forensic Examination 后缀自动机 + 线段树合并的更多相关文章
- cf666E. Forensic Examination(广义后缀自动机 线段树合并)
题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...
- BZOJ3413: 匹配(后缀自动机 线段树合并)
题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并... 首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数.(画一画就出来了) 然后直 ...
- [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)
https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...
- 模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)
模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...
- 【BZOJ4556】[TJOI2016&HEOI2016] 字符串(后缀自动机+线段树合并+二分)
点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...
- bzoj5417/luoguP4770 [NOI2018]你的名字(后缀自动机+线段树合并)
bzoj5417/luoguP4770 [NOI2018]你的名字(后缀自动机+线段树合并) bzoj Luogu 给出一个字符串 $ S $ 及 $ q $ 次询问,每次询问一个字符串 $ T $ ...
- CF 666E Forensic Examination——广义后缀自动机+线段树合并
题目:http://codeforces.com/contest/666/problem/E 对模式串建广义后缀自动机,询问的时候把询问子串对应到广义后缀自动机的节点上,就处理了“区间”询问. 还要处 ...
- CF666E Forensic Examination(后缀自动机+线段树合并)
给你一个串S以及一个字符串数组T[1..m],q次询问,每次问S的子串S[pl..pr]在T[l..r]中的哪个串里的出现次数最多,并输出出现次数. 如有多解输出最靠前的那一个. 我们首先对m个字符串 ...
- [CF666E]Forensic Examination:后缀自动机+线段树合并
分析 用到了两个小套路: 使用线段树合并维护广义后缀自动机的\(right\)集合. 查询\(S[L,R]\)在\(T\)中的出现次数:给\(T\)建SAM,在上面跑\(S\),跑到\(R\)的时候先 ...
随机推荐
- jquery的json对象与字符串之间转换
json对象----- >>字符串 JSON.stringify(obj) json字符串------>>json对象 JSON.parse(string) 公众号 欢迎关注我 ...
- 《Linux命令行与shell脚本编程大全》 第五章理解shell
5.1 1. cat /etc/passwd 可以查看每个用户自己的默认的shell程序. 2.默认的交互shell会在用户登录某个虚拟控制台终端时启动. 不过还有另外一个默认的shell是/bin/ ...
- JS高级前端开发群加群说明
JS高级前端开发群加群说明 *一.文章背景: *二. 高级群: *三. 加入方式: *四. 说明: 一.文章背景: 去年年初建了几个群,在不经意间火了,一直排在"前端开发"关键字搜 ...
- PHP-Redis操作
/*1.Connection*/ $redis = new Redis(); $redis->connect('127.0.0.1',6379,1);//短链接,本地host,端口为6379,超 ...
- HDU 2093 考试排名 模拟题
解题报告: 题目描述:写一个程序给一个编程考试C++实时提交系统排名,给你的数据是题目的总数,每次错误提交罚的时间分,每位用户的姓名,然后是输入用户每题的完成情况,有一下几种情况,第一,输入只有一个正 ...
- 【IT界的厨子】家常版本的黄焖鸡
前言: 周末在家,闲来无事, 使用简单的食材,满足家人的味蕾,做出秒杀馆子的黄焖鸡(我是这么认为的).虽然没有厨师的手艺,但为家人做饭,也是一种幸福. 用料: 主料:老母鸡一只,要求店老板剁好 配料: ...
- 第6月第10天 svn checkout sqlite3
1. http://www.cnblogs.com/xuling/p/5602036.html 2. http://blog.csdn.net/qq_26819733/article/details/ ...
- Javascript - Vue - 过滤器
过滤器 输出的数据由vue对象提供,但它的数据可能需要做进一步的处理才适合展示给用户看,为此,可以在静态的Vue上定义一个过滤器对实例vue对象的data数据进行过滤处理. //调用过滤器//msg是 ...
- 网页排版的时候不要忘了table标签
[概况] DIV+CSS是WEB设计标准,它是一种网页的布局方法.与传统中通过表格(table)布局定位的方式不同,它可以实现网页页面内容与表现相分离.但有时候在布局的时候,纯粹的用div感觉嵌套的太 ...
- 字符串格式化(百分号&format)
字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号方式: %[(name)][flags][width].[precision]typecode [ ]:表示 ...