拉格朗日插值+dp

直接dp是n立方的,我们考虑优化。

dp式子为f[i][j]=f[i-1][j-1]*j*i+f[i-1][j]表示i个元素选j个的答案

然后发现最高次就是2j次,所以我们预处理出2n个点的值再用拉格朗日一插就好。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int A,n,mod;
int qmod(int a,int b)
{
int ans=;
while(b)
{
if(b&)ans=1ll*ans*a%mod;
b>>=;a=1ll*a*a%mod;
}
return ans;
}
ll f[][],inv[],las[],fac[],pre[],ans;
int main()
{
scanf("%d%d%d",&A,&n,&mod);
f[][]=;
for(int i=;i<=min(n*,A);++i)
for(int j=;j<=n;++j)
if(j)f[i][j]=(1ll*i%mod*j%mod*f[i-][j-]%mod+f[i-][j])%mod;
else f[i][j]=f[i-][j];
if(A<=n*){
printf("%d\n",f[A][n]);
return ;
}
inv[]=inv[]=fac[]=inv[]=;
pre[]=A%mod;
for(int i=;i<=n*;++i)
{
pre[i]=pre[i-]*(A-i)%mod;
fac[i]=fac[i-]*i%mod;
}
las[n*]=(A-n*)%mod;inv[n*]=qmod(fac[n*],mod-);
for(int i=n*-;i>=;--i)las[i]=las[i+]*(A-i+mod)%mod;
for(int i=n*-;i>=;--i)inv[i]=inv[i+]*(i+)%mod;
for(int i=;i<=n*;++i)
{
ll INV,FAC=;
if((n*-i)&)INV=-1ll*inv[i]*inv[n*-i]%mod;
else INV=1ll*inv[i]*inv[n*-i]%mod;
if(i>)FAC=pre[i-]%mod;
if(i<n*)FAC=FAC*las[i+]%mod;
ans=(ans+FAC*f[i][n]%mod*INV%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}

BZOJ2655 calc的更多相关文章

  1. BZOJ2655 Calc - dp 拉格朗日插值法

    BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...

  2. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  3. BZOJ2655 calc(动态规划+拉格朗日插值法)

    考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...

  4. BZOJ2655: calc(dp 拉格朗日插值)

    题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] ...

  5. 2019.02.19 bzoj2655: calc(生成函数+拉格朗日插值)

    传送门 题意简述:问有多少数列满足如下条件: 所有数在[1,A][1,A][1,A]之间. 没有相同的数 数列长度为nnn 一个数列的贡献是所有数之积,问所有满足条件的数列的贡献之和. A≤1e9,n ...

  6. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  7. PKUSC2018训练日程(4.18~5.30)

    (总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...

  8. 【BZOJ2655】Calc(拉格朗日插值,动态规划)

    [BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...

  9. 【BZOJ2655】calc(拉格朗日插值)

    bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的 ...

随机推荐

  1. Python微信红包算法

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  2. Hadoop生态圈-zookeeper的API用法详解

    Hadoop生态圈-zookeeper的API用法详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.测试前准备 1>.开启集群 [yinzhengjie@s101 ~] ...

  3. [整理].net中的延迟初始化器

    LazyInitializer类 private void EnsureInitialized() { LazyInitializer.EnsureInitialized(ref _initializ ...

  4. 20155305乔磊2016-2017-2《Java程序设计》第六周学习总结

    20155305乔磊2016-2017-2<Java程序设计>第六周学习总结 教材学习内容总结 InputStream与OutputStream 串流设计 1.串流:Java将输入/输出抽 ...

  5. jquery的clone方法bug的修复select,textarea的值丢失

    项目中多次使用了iframe,但是操作起来是比较麻烦,项目中的现实情况是最外面是一个form,里面嵌套一个iframe,下面是一个其他的数据,在form提交的时候将iframe的数据和其他的数据一块提 ...

  6. 数链剖分(Tree)

    题目链接:https://cn.vjudge.net/contest/279350#problem/D 题目大意:操作,单点查询,区间取反,询问区间最大值. AC代码: #include<ios ...

  7. request_irq与request_threaded_irq

    /* * Allocate the IRQ */ #if 0 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011 ...

  8. Linux监控重要进程的实现方法

    Linux监控重要进程的实现方法 不管后台服务程序写的多么健壮,还是可能会出现core dump等程序异常退出的情况,但是一般情况下需要在无 人为干预情况下,能够自动重新启动,保证服务进程能够服务用户 ...

  9. 打开文件或者uri的方式--------进程启动文件和启动者启动文件

    The  Process class in  System.Diagnostics allows you to launch a new process.For security reasons, t ...

  10. VMWare 虚拟机 安装 Mac OS X

    VMWare安装Mac OS X 随着iPhone.iPad.Mac等苹果产品越来越火爆,越来越多的初学者想要了解和尝试苹果平台,包括苹果操作系统Mac OS X.苹果演示软件Keynote.苹果开发 ...