NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记
列队
题目大意:
给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\)。保证\(w_{i,j}\)互不相同。\(q(q\le5\times10^5)\)次询问,每次给出\(x,y\),询问有多少数满足在本行是第\(x\)大,在本列是第\(y\)大。
思路:
对每行、每列分别排序,求出每个数是本行、本列第几大。然后即可预处理答案。
时间复杂度\(\mathcal O(n^2\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1000;
int a[N][N],x[N][N],y[N][N],cnt[N][N];
std::pair<int,int> b[N];
int main() {
const int n=getint(),m=getint(),q=getint();
for(register int i=0;i<n;i++) {
for(register int j=0;j<m;j++) {
a[i][j]=getint();
b[j]=std::make_pair(a[i][j],j);
}
std::sort(&b[0],&b[m]);
for(register int j=0;j<m;j++) {
x[i][b[j].second]=m-j-1;
}
}
for(register int j=0;j<m;j++) {
for(register int i=0;i<n;i++) {
b[i]=std::make_pair(a[i][j],i);
}
std::sort(&b[0],&b[n]);
for(register int i=0;i<n;i++) {
y[b[i].second][j]=n-i-1;
}
}
for(register int i=0;i<n;i++) {
for(register int j=0;j<m;j++) {
cnt[x[i][j]][y[i][j]]++;
}
}
for(register int i=0;i<q;i++) {
const int x=getint()-1,y=getint()-1;
printf("%d\n",cnt[x][y]);
}
return 0;
}
染色
题目大意:
有一排\(n(n\le5000)\)个格子,有\(m(m\le5000)\)种颜色可以染,求有多少种染色方案,满足连续\(m\)个格子至少有\(2\)个格子颜色相同。
思路:
\(f_{i,j}\)表示考虑完前\(i\)个格子,最后有连续\(j\)个格子颜不同。
转移方程为:
\]
前缀和优化即可。
时间复杂度\(\mathcal O(nm)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=5001;
int f[N][N],g[N][N];
int main() {
const int n=getint(),m=getint(),p=getint();
f[0][0]=g[0][0]=1;
for(register int i=1;i<=n;i++) {
for(register int j=1;j<=std::min(i,m-1);j++) {
f[i][j]=((int64)f[i-1][j-1]*(m-j+1)+g[i-1][j])%p;
}
g[i][i]=f[i][i];
for(register int j=i-1;j>=1;j--) {
g[i][j]=(g[i][j+1]+f[i][j])%p;
}
}
printf("%d\n",g[n][1]);
return 0;
}
游戏
题目大意:
游戏中有\(n(n\le10^5)\)个角色,编号分别是\(1\sim n\)。在游戏里面角色一共有\(m+1(m\le10)\)个等级,分别是\(0\sim m\),等级是由经验值决定的。形式化的,游戏有\(m\)个参数\(a_1\sim a_m\),满足\(a_1<a_2<\ldots<a_m\)。若某个角色的经验值是\(x\),那么他的等级就是满足\(x\ge a_i\)的最大的\(i\),(当\(x<a1\)时是\(0\))。
可以干两件事情:
- 打怪:带上编号在某一个区间\([l,r]\)内所有角色去打怪,这样结束之后这些角色都可以得到\(x\)的经验值;
- 氪金:充值之后把编号为\(p\)的角色的经验值魔改为\(x\)。
给出\(q(q\le10^5)\)询问,每个询问给出\([l,r]\),求编号在\([l,r]\)区间内的所有角色的等级的和。
思路:
线段树维护每个角色的等级,以及升到下一级所需的经验值。
若升级经验值\(\le 0\)则暴力修改。
可以证明修改次数不超过\(\mathcal O((n+q)m)\),因此复杂度是可以保证的。
源代码:
#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,M=11;
int n,m,q,a[M];
class SegmentTree {
#define _left <<1
#define _right <<1|1
#define mid ((b+e)>>1)
private:
int min[N<<2],sum[N<<2],tag[N<<2];
void push_up(const int &p) {
min[p]=std::min(min[p _left],min[p _right]);
sum[p]=sum[p _left]+sum[p _right];
}
void push_down(const int &p) {
if(tag[p]==0) return;
min[p _left]-=tag[p];
min[p _right]-=tag[p];
tag[p _left]+=tag[p];
tag[p _right]+=tag[p];
tag[p]=0;
}
void maintain(const int &p,const int &b,const int &e) {
if(b==e) {
const int x=a[sum[p]+1]-min[p];
sum[p]=std::upper_bound(&a[1],&a[m]+1,x)-&a[1];
min[p]=sum[p]!=m?a[sum[p]+1]-x:INT_MAX;
return;
}
push_down(p);
if(min[p _left]<=0) maintain(p _left,b,mid);
if(min[p _right]<=0) maintain(p _right,mid+1,e);
push_up(p);
}
public:
void build(const int &p,const int &b,const int &e) {
if(b==e) {
const int x=getint();
sum[p]=std::upper_bound(&a[1],&a[m]+1,x)-&a[1];
min[p]=sum[p]!=m?a[sum[p]+1]-x:INT_MAX;
return;
}
build(p _left,b,mid);
build(p _right,mid+1,e);
push_up(p);
}
void add(const int &p,const int &b,const int &e,const int &l,const int &r,const int &x) {
if(b==l&&e==r) {
min[p]-=x;
tag[p]+=x;
return;
}
push_down(p);
if(l<=mid) add(p _left,b,mid,l,std::min(mid,r),x);
if(r>mid) add(p _right,mid+1,e,std::max(mid+1,l),r,x);
push_up(p);
}
void modify(const int &p,const int &b,const int &e,const int &x,const int &y) {
if(b==e) {
sum[p]=std::upper_bound(&a[1],&a[m]+1,y)-&a[1];
min[p]=sum[p]!=m?a[sum[p]+1]-y:INT_MAX;
return;
}
push_down(p);
if(x<=mid) modify(p _left,b,mid,x,y);
if(x>mid) modify(p _right,mid+1,e,x,y);
push_up(p);
}
int query(const int &p,const int &b,const int &e,const int &l,const int &r) {
if(b==l&&e==r) {
if(min[p]<=0) maintain(p,b,e);
return sum[p];
}
int ret=0;
push_down(p);
if(l<=mid) ret+=query(p _left,b,mid,l,std::min(mid,r));
if(r>mid) ret+=query(p _right,mid+1,e,std::max(mid+1,l),r);
push_up(p);
return ret;
}
#undef _left
#undef _right
#undef mid
};
SegmentTree t;
int main() {
n=getint(),m=getint(),q=getint();
for(register int i=1;i<=m;i++) a[i]=getint();
t.build(1,1,n);
for(register int i=0;i<q;i++) {
const int opt=getint();
if(opt==1) {
const int l=getint(),r=getint(),x=getint();
t.add(1,1,n,l,r,x);
}
if(opt==2) {
const int p=getint(),x=getint();
t.modify(1,1,n,p,x);
}
if(opt==3) {
const int l=getint(),r=getint();
printf("%d\n",t.query(1,1,n,l,r));
}
}
return 0;
}
NOI.AC NOIP模拟赛 第三场 补记的更多相关文章
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)
题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛R3解题报告
心路历程 预计得分:\(100+100+50=250\) 实际得分:\(10 +100 +50 = 160\) 三道原题,真好.T2做过,T1写了个错误思路,T3写了写50分状压dp. 整场考试实际在 ...
- 【noi.ac-CSP-S全国模拟赛第三场】#705. mmt
给定数组a[],b[] 求$$c_i=\sum_{j=1}^{i} a_{\left \lfloor \frac{n}{j} \right \rfloor}·b_{i \bmod j}$$ 大概就是对 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
随机推荐
- np.random.choice方法
np.random.choice方法 觉得有用的话,欢迎一起讨论相互学习~Follow Me def choice(a, size=None, replace=True, p=None) 表示从a中随 ...
- 在angularJs实现批量删除
原理:在js中定义一个数组,然后给每个复选框一个点击事件,点击事件的方法参数有两个,一个是事件源$event,一个是id.点击复选框根据事件源判断是否被选中,然后进而是向这个数组增加或者删除id. $ ...
- 一个ssm综合小案例-商品订单管理-第一天
项目需求分析: 功能需求:登录,商品列表查询,修改 项目环境及技术栈: 项目构成及环境: 本项目采用 maven 构建 环境要求: IDEA Version: 2017.2.5 Tomcat Vers ...
- [原]Android 初遇Http错误 httpClient.execute
错误源头: HttpResponse response = httpClient.execute(httpget); 错误信息: android.os.NetworkOnMainThreadExcep ...
- git log查看某一个分支的提交
如果想查看某一个分支的提交信息:git log 或者是查看分支名:git log $分支名/tag名/远程分支名 查看提交的详情: git log -p
- Xgboost理解
一.xgboost模型函数形式 xgboost也是GBDT的一种,只不过GBDT在函数空间进行搜索最优F的时候,采用的是梯度下降法也就是一阶泰勒展开:而xgboost采用的是二阶泰勒展开也就是牛顿法, ...
- python之pip安装mysql-python失败
前言 由于公司使用的python版本是python2,并且连接mysql的包是mysql-python,但是mysql-python 使用pip安装报错,需要C++环境等依赖,于是使用wheel直接安 ...
- centos7.2环境yum方式快速搭建lnmp环境nginx+mariadb+php-fpm
centos7.2环境yum方式安装nginx+mariadb+php-fpm 1.安装lnmp环境 安装epel源 yum install -y epel-release 安装 MySQL + PH ...
- SOA 解惑
SOA 解惑 SOA 不是一种技术,它是一种设计方法.最近一段时间我碰到了很多关于 SOA 的具有误导性的文章.尤其是,有些人混淆了 SOA 和诸如 BPM.ESB 以及复合事件处理 (CEP) 之类 ...
- vue组件库(一):前期准备工作
前言 将近期项目内自行开发一个vue组件,做个总结,记录下自己的思维过程~~~ 正文 接到这个任务后,还是要做些准备工作的. 主要内容如下: 1.优化下所在团队前端开发流程 服务器搭建gitlab,采 ...