【HDU 5382】 GCD?LCM! (数论、积性函数)
GCD?LCM!
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 316 Accepted Submission(s): 200
OutputT lines, find S(n) mod 258280327.Sample Input8
1
2
3
4
10
100
233
11037Sample Output1
5
13
26
289
296582
3928449
213582482AuthorSXYZSource
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010
#define Mod 258280327 int pri[Maxn],pl,g[Maxn],t[Maxn],f[Maxn];
bool vis[Maxn]; void init()
{
memset(vis,,sizeof(vis));
pl=;g[]=;
for(int i=;i<=Maxn-;i++)
{
if(!vis[i]) pri[++pl]=i,g[i]=;
for(int j=;j<=pl;j++)
{
if(pri[j]*i>Maxn-) break;
vis[i*pri[j]]=;
if(i%pri[j]==) g[i*pri[j]]=g[i];
else g[i*pri[j]]=*g[i]%Mod;
if(i%pri[j]==) break;
}
}
for(int i=;i<=Maxn-;i++)
{
for(int j=i;j<=Maxn-;j+=i)
{
t[j]=(t[j]+g[j/i-])%Mod;
}
}
for(int i=;i<=Maxn-;i++) f[i]=(f[i-]+(*i-)-t[i-])%Mod;
for(int i=;i<=Maxn-;i++) f[i]=((f[i]+f[i-])%Mod+Mod)%Mod;
} int main()
{
init();
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
printf("%d\n",f[n]);
}
return ;
}
【有一点点容斥的东东在么?】
2017-04-27 15:28:52
【HDU 5382】 GCD?LCM! (数论、积性函数)的更多相关文章
- 2015多校第8场 HDU 5382 GCD?LCM! 数论公式推导
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5382 题意:函数lcm(a,b):求两整数a,b的最小公倍数:函数gcd(a,b):求两整数a,b的最 ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- hdu 5382 GCD?LCM! - 莫比乌斯反演
题目传送门 传送门I 传送门II 题目大意 设$F(n) = \sum_{i = 1}^{n}\sum_{j = 1}^{n}\left [ [i, j] + (i, j) \geqslant n \ ...
- hdu 5382 GCD?LCM!
先考虑化简f函数 发现,f函数可以写成一个递归式,化简后可以先递推求出所有f函数的值, 所以可以先求出所有S函数的值,对于询问,O(1)回答 代码: //File Name: hdu5382.cpp ...
- 积性函数,线性筛入门 HDU - 2879
HDU - 2879HeHe 题意:He[N]为[0,N−1]范围内有多少个数满足式子x2≡x (mod N),求HeHe[N]=He[1]×……×He[N] 我是通过打表发现的he[x]=2k,k为 ...
- 数学--数论--HDU 5382 GCD?LCM?(详细推导,不懂打我)
Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the ...
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
随机推荐
- OpenStack 图形化服务 Horizon介绍和部署(十二)
Horizon介绍 Horizon是一个web接口,使得云平台管理员以及用户可以管理不同的OpenStack资源以及服务. 提供一个Web界面操作OpenStack系统 使用Django框架基于Ope ...
- WEB前端技巧之JQuery为动态添加的元素绑定事件.md
jquery 为动态添加的元素绑定事件 如果直接写click函数的话,只能把事件绑定在已经存在的元素上,不能绑定在动态添加的元素上 可以用delegate来实现 .delegate( select ...
- Win10新增功能快捷键大全
原文地址:http://wenwen.sogou.com/z/q703976788.htm贴靠窗口:Win + 左/右 > Win + 上/下 > 窗口可以变为 1/4 大小放置在屏幕 4 ...
- c#的委托用法delegate
- python学习笔记7-网络编程
import urllib.request import json,requests #urlib模块,不常用 url = 'http://api.nnzhp.cn/api/user/stu_info ...
- WebViewJavascriptBridge测试示例
android或ios:app与html5通信解决方案 下面只是前端示例代码,后端代码请参考: git https://github.com/marcuswestin/WebViewJavascrip ...
- the error about “no such file or directory”
CHENYILONG Blog the error about "no such file or directory" when you get the question like ...
- centos-7安装redis服务
一.Redis下载 在centOS里通过wget下载redis wget http://download.redis.io/releases/redis-4.0.11.tar.gz 具体版本下载地址 ...
- Jmeter如何保持cookie,让所有请求都能用同一个cookie,免去提取JSESSIONID
近期有柠檬班的学生找到华华,问了一个问题,就是利用Jmeter做接口测试的时候,如何提取头部的JSESSIONID然后传递到下一个请求,继续完成当前用户的请求. 其实,关于这个问题有三种种解决方法: ...
- Javascript - LayUI库的流加载
LayUI库的流加载 用的LayUI-v2.2.45,将整个包解压缩后添加到项目,引入两个文件即可,不需要引入Jquery,此库自带: <link href="../js/layui- ...