一开始写这篇随笔的时候还没有了解到 Dateloader有一个 collate_fn 的参数,通过定义一个collate_fn 函数,其实很多batch补齐到当前batch最长的操作可以放在collate_fn 里面去,这样代码在训练和模型中就可以更加简洁。有时间再整理一下这个吧。

_________________________________________

使用的主要部分包括:Dateset、 Dateloader、MSELoss、PackedSequence、pack_padded_sequence、pad_packed_sequence

模型包含LSTM模块。

参考了下面两篇博文,总结了一下。对PackedSequence相关的理解可以先看这两篇。本文主要是把这些应用从数据准备到loss计算都串起来大致提供了一下代码思路,权当给自己的提醒备份吧。或者看完下面两篇,但是不知道具体怎么操作的朋友们一个参考。

http://www.cnblogs.com/lindaxin/p/8052043.html#commentform

https://blog.csdn.net/lssc4205/article/details/79474735

使用Dateset构建数据集的时候,在__getitem__函数中把所有数据先补齐到 全局最长序列的长度。

def __getitem__(self, index):
'''
get original data
此处省略获取原始数据的代码
input_data,output_data
数据shape是 seq_length * feature_dim
'''
# 当前seq_length小于所有数据中的最长数据长度,则补0到同一长度。
ori_length = input_data.shape[0]
if ori_length < self.max_len:
npi = np.zeros(self.input_feature_dim, dtype=np.float32)
npi = np.tile(npi, (self.max_len - ori_length,1))
input_data = np.row_stack((input_data, npi))
npo = np.zeros(self.output_feature_dim, dtype=np.float32)
npo = np.tile(npo, (self.max_len - ori_length,1))
output_data = np.row_stack((output_data, npo))
return input_data, output_data, ori_length, input_data_path

在模型中,forward的实现中,需要在LSTM之前使用pack_padded_sequence、在LSTM之后使用pad_packed_sequence,中间还涉及到顺序的还原之类的操作。

def forward(self, input_x, length_list, hidden=None):
if hidden is None:
# 这里没用 配置中的batch_size,而是直接在input_x中取batch_size是为了防止last_batch的batch_size不是配置中的那个,引发bug
h_0 = input_x.data.new(self.directional*self.layer_num, input_x.shape[0], self.hidden_dim).fill_(0).float()
c_0 = input_x.data.new(self.directional*self.layer_num, input_x.shape[0], self.hidden_dim).fill_(0).float()
else:
h_0, c_0 = hidden
'''
省略模型其他部分,直接进去LSTM前后的操作
'''
_, idx_sort = torch.sort(length_list, dim=0, descending=True)
_, idx_unsort = otrch.sort(idx_sort, dim=0) input_x = input_x.index_select(0, Variable(idx_sort))
length_list = list(length_list[idx_sort])
pack = nn_utils.rnn.pack_padded_sequence(input_x, length_list, batch_first=self.batch_first)
output, hidden = self.BiLSTM(pack, (h0, c0))
un_padded = nn_utils.rnn.pad_packed_sequence(output, batch_first=self.batch_first)
un_padded = un_padded[0].index_select(0, Variable(idx_unsort))
# 此时的un_padded已经完成了还原,并且补0完成,而且这时的补0到的序列长度是当前batch的最长长度,而不是Dateset中的全局最长长度!
# 所以在main train函数中也要对label的seq做处理
return un_padded

main train中,要对label做相应的截断处理,因为模型返回的长度已经是补齐到当前batch的最长序列长度了,而dateset返回的label是补齐到全局最长序列长度。算loss的时候,MSELoss的reduce参数要设置成false,让loss函数返回一个loss矩阵,再构造一个01掩膜矩阵mask,矩阵相乘求和得到真的loss(达到填充0的位置不参与loss的目的)

def train(**kwargs):
  train_data = my_dataset()
  train_dataloader = DataLoader(train_data, opt.batch_size, shuffle=True, num_workers=opt.num_workers)
  model = getattr(models, opt.model)(batchsize=opt.batch_size)
  criterion = torch.nn.MSELoss(reduce=False)
  lr = opt.lf
  optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=opt.weight_decay)
  for epoch in range(opt.start_epoch, opt.max_epoch):
    for ii, (data, label, length_list,_) in tqdm(enumerate(train_dataloader)):
      cur_batch_max_len = length_list.max()
      data = Variable(data)
      target = Variable(label)       optimizer.zero_grad()
      score = model(data, length_list)
      loss_mat = criterion(score, target)
      list_int = list(length_list)
      mask_mat = Variable(t.ones(len(list_int),cur_batch_max_len,opt.output_feature_dim))
      num_element = 0
      for idx_sample in range(len(list_int)):
        num_element += list_int[idx_sample] * opt.output_feature_dim
        if list_int[idx_sample] != cur_batch_max_len:
          mask_mat[idx_sample, list[idx_sample]:] = 0.0       loss = (loss_mat * mask_mat).sum() / num_element
      loss.backward()
      optimizer.step()

pytorch 对变长序列的处理的更多相关文章

  1. pytorch中如何处理RNN输入变长序列padding

    一.为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练 ...

  2. keras: 在构建LSTM模型时,使用变长序列的方法

    众所周知,LSTM的一大优势就是其能够处理变长序列.而在使用keras搭建模型时,如果直接使用LSTM层作为网络输入的第一层,需要指定输入的大小.如果需要使用变长序列,那么,只需要在LSTM层前加一个 ...

  3. 0-3为变长序列建模modeling variable length sequences

    在本节中,我们会讨论序列的长度是变化的,也是一个变量 we would like the length of sequence,n,to alse be a random variable 一个简单的 ...

  4. Python技法1:变长和定长序列拆分

    Python中的任何序列(可迭代的对象)都可以通过赋值操作进行拆分,包括但不限于元组.列表.字符串.文件.迭代器.生成器等. 元组拆分 元组拆分是最为常见的一种拆分,示例如下: p = (4, 5) ...

  5. C++中的变长参数

    新参与的项目中,为了使用共享内存和自定义内存池,我们自己定义了MemNew函数,且在函数内部对于非pod类型自动执行构造函数.在需要的地方调用自定义的MemNew函数.这样就带来一个问题,使用stl的 ...

  6. Scala 变长参数

    如果Scala定义变长参数 def sum(i Int*), 那么调用sum时,可以直接输入sum(1,2,3,4,5) 但是不可以sum(1 to 5) 必须要将1 to 5 强制为seq sum( ...

  7. 报文格式:xml 、定长报文、变长报文

    目前接触到的报文格式有三种:xml .定长报文.变长报文 . 此处只做简单介绍,日后应该会深入学习到三者之间如何解析,再继续更新.——2016.9.23 XML XML 被设计用来传输和存储数据. H ...

  8. GCC 中零长数组与变长数组

    前两天看程序,发现在某个函数中有下面这段程序: int n; //define a variable n int array[n]; //define an array with length n 在 ...

  9. 删除变长列字段后使用DBCC CLEANTABLE回收空间

    标签:SQL Server Reclaim space 收缩表 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://lzf328.bl ...

随机推荐

  1. JDK5新特性之 可变参数的方法

    可变参数的方法:不知道这个方法该定义多少个参数 注意: > 参数实际上是数组 > 必须写在参数列表最后一个 package cn.itcast.day24.varparam; import ...

  2. 49_分析代理类的作用与原理及AOP概念

    生活中的代理 武汉人从武汉的代理商手中买联想电脑和直接跑到北京传智播客旁边来找联想总部买电脑,你觉得最终的主体业务目标有什么区别吗?基本上一样吧,都解决了核心问题,但是,一点区别都没有吗?从代理商那里 ...

  3. October 31st, 2017 Week 44th Tuesday

    No matter how hard the past is, you can always begin again. 不管过去有多么困难,你都可以重新开始. Honestly, I don't ag ...

  4. Linux下源码编译安装MySQL 5.5.8

    准备工作: 新建用户和用户组 groupadd mysql useradd -g mysql mysql 1:下载: bison-2.4.2.tar.bz2 cmake-2.8.3.tar.gz ma ...

  5. bootstrap模态框input不能获取焦点并编辑【转】

    Bootstrap模态框时input标签[日期控件也有这样的问题]不能编辑的问题,下面是我的解决方法: 1.将下图中框出来的属性删掉即可: 2.兼容火狐浏览器,笔者在火狐中还是不能编辑,去掉下图属性即 ...

  6. 将Vue-cli搭建的项目改造成多页面应用时对项目结构和配置的调整

    创建项目 首先初始化一个Vue项目模板,之后在模板下载时候会弹出如下配置选项 vue init webpack demo 配置好后按下回车就构建完成了Vue脚手架,之后cd进入项目,并且进行node模 ...

  7. BZOJ4300:绝世好题(DP)

    Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). Input 输入文件共2行. 第一行包括一个整数 ...

  8. 记录一次elasticsearch-php工作过程

    初始化 $hosts = array('192.168.30.41'); $this->client = \Elasticsearch\ClientBuilder::create()->s ...

  9. Jquery简单的placeholder效果

    Jquery简单的placeholder效果 由于IE6-IE9不支持HTML5中的placeholder,所以自己依赖于Jquery简单的写了一个,供参考! 先看看效果吧!如下JSFiddle地址 ...

  10. Unable to start a VM due to insufficient capacity

    今天cloudstack中的一个普通用户创建虚拟机时,总是报错:Unable to start a VM due to insufficient capacity ,看management and a ...