C#复数类的总结
复数是C#中没有的,不能直接调用的。但是我们可以通过封装,构造自己的复数形式。这里我自己封装了一个Complex类,也不知道写得如何。可能还有一些东西没有考虑。
不过这里包含了复数的基本晕算了了,包括加减乘除、取模运算、计算相位角等!详细信息其直接阅读代码。都包含注释了。
/// <summary>
/// 复数类
/// </summary>
public class Complex
{
private double real;//实部
private double image;//虚部
/// <summary>
/// 获取或设置实部
/// </summary>
public double Real
{
get { return real; }
set { real = value; }
}
/// <summary>
/// 获取或者设置虚部
/// </summary>
public double Image
{
get { return image; }
set { image = value; }
}
public Complex(double real, double image)
{
this.real = real;
this.image = image;
}
public Complex() { }
/// <summary>
/// 取共轭
/// </summary>
public Complex Conjugate()
{
//Complex complex = new Complex();
//complex.real = this.real;
//complex.image = -complex.image;
//return complex;
return new Complex(this.real, -this.image);
}
/// <summary>
/// 加法重载函数
/// </summary>
/// <param name="C">加数</param>
/// <param name="c">加数</param>
/// <returns>复数相加的结果</returns>
public static Complex operator +(Complex C, Complex c)
{
//Complex com = new Complex();
//com.real = C.real + c.real;
//com.image = C.image + c.image;
//return com;
return new Complex(c.real + C.real, C.image + c.image);
}
/// <summary>
/// 复数的加法,可以同时实现多个复数相加
/// 其实跟直接用+号来相加的结果是一样的,
/// 个人只是想多学习可变参数的用法
/// </summary>
/// <param name="complexs"></param>
/// <returns></returns>
public Complex Add(params Complex[] complexs)
{
if (complexs.Length == 0)
{
throw new Exception("输入的参数不能为空!");
}
Complex com = new Complex();
foreach (Complex c in complexs)
{
com = com + c;
}
return com;
}
/// <summary>
/// 复数的减法重载函数
/// </summary>
/// <param name="C">被减数</param>
/// <param name="c">减数</param>
/// <returns>复数相减后的结果</returns>
public static Complex operator -(Complex C, Complex c)
{
//Complex com = new Complex();
//com.real = C.real -c.real;
//com.image = C.image - c.image;
//return com;
return new Complex(C.real - c.real, C.image - c.Image);
}
/// <summary>
/// 双等号函数的重载
/// </summary>
/// <param name="C"></param>
/// <param name="c"></param>
/// <returns>如果相等返回true,否则返回fasle</returns>
public static bool operator ==(Complex C, Complex c)
{
return (C.real == c.real && C.image == c.image);
}
/// <summary>
/// 不等号函数的重载
/// </summary>
/// <param name="C"></param>
/// <param name="c"></param>
/// <returns></returns>
public static bool operator !=(Complex C, Complex c)
{
return (C.real != c.real || C.image != c.image);
}
/// <summary>
/// 复数的相减,可以同时实现多个复数相减
/// 其实跟直接用-号来相加的结果是一样的,
/// 个人只是想多学习可变参数的用法
/// </summary>
/// <param name="complexs">数的集合</param>
/// <returns>相减操作后的复数</returns>
public Complex Minus(params Complex[] complexs)
{
if (complexs.Length == 0)
{
throw new Exception("输入的参数不能为空!");
}
Complex com =complexs[0];
for (int i = 1; i < complexs.Length; i++)
{
com = com - complexs[i];
}
return com;
}
/// <summary>
/// 复数的乘法运算
/// </summary>
/// <param name="c"></param>
/// <param name="C"></param>
/// <returns></returns>
public static Complex operator *(Complex c, Complex C)
{
//(a+b*i)*(c+d*i)=(ac-bd)+(ad+bc)*i
return new Complex(c.real * C.real-c.image*C.image, c.real*C.image+c.image * C.real);
}
public Complex Multiplicative(params Complex[] complexs)
{
if (complexs.Length == 0)
{
throw new Exception("输入的参数不能为空!");
}
Complex com = complexs[0];
for (int i = 1; i < complexs.Length; i++)
{
com += complexs[i];
}
return null;
}
/// <summary>
/// 复数除法
/// </summary>
/// <param name="C"></param>
/// <param name="c"></param>
/// <returns></returns>
public static Complex operator /(Complex C, Complex c)
{
if (c.real == 0 && c.image == 0)
{
throw new Exception("除数的虚部和实部不能同时为零(除数不能为零)");
}
double real = (C.real * c.real + c.image * C.image)/(c.real*c.real+c.image+c.image);
double image=(C.image*c.real-c.image*C.real)/(c.real*c.real+c.image+c.image);
return new Complex(real,image);
}
/// <summary>
/// 复数除法运算
/// </summary>
/// <param name="complexs">一系列复数</param>
/// <returns>除法运算后的结果</returns>
public Complex Divison(params Complex[] complexs)
{
if (complexs.Length == 0)
{
throw new Exception("输入的参数不能为空!");
}
foreach (Complex com in complexs)
{
if (com.image==0&&com.real==0)
{
throw new Exception("除数的实部和虚部不能同时为零!");
}
}
Complex COM = new Complex();
COM = complexs[0];
for (int i = 1; i < complexs.Length; i++)
{
COM = COM / complexs[i];
}
return COM;
}
/// <summary>
/// 取模运算
/// </summary>
/// <param name="c"></param>
/// <returns></returns>
public double Mod(Complex c)
{
return Math.Sqrt(c.real * c.real + c.image * c.image);
}
/// <summary>
/// 判断复数是否相等
/// </summary>
/// <param name="obj"></param>
/// <returns></returns>
public override bool Equals(object obj)
{
if (obj is Complex)
{
Complex com = (Complex)obj;
return (com.real == this.real && com.image == this.image);
}
return false;
}
/// <summary>
/// 计算复数相位角
/// </summary>
/// <param name="c"></param>
/// <returns></returns>
public static double GetAngle(Complex c)
{
return Math.Atan2(c.real, c.image);
}
public override string ToString()
{
//string str = null;
//if (this.image == 0)
//{
// str = "=";
//}
//else if (this.image > 0)
//{
// str = ">";
//}
//switch (str)
//{
// case ">":
// if (this.real == 0)
// {
// return string.Format("{0}i", this.image);
// }
// return string.Format("{0}+{1}i", this.real, this.image);
// case "=":
// return string.Format("{0}",this.real);
// default:
// if (this.real == 0)
// {
// return string.Format("{0}i", this.image);
// }
// return string.Format("{0}+{1}i", this.real, this.image);
//}
return string.Format("<{0} , {1}>", this.real, this.image);
}
}
第一次发博文,也知道自己的水平菜菜的,慢慢进步。。
C#复数类的总结的更多相关文章
- [GeekBand] C++学习笔记(1)——以复数类为例
本篇笔记以复数类(不含指针的类)为例进行面向对象的学习 ========================================================= 复数类的声明: class ...
- 复数类(C++练习一)
写一个复数类,实现基本的运算,目的熟悉封装与数据抽象. 类的定义 #include <iostream> #include <vector> using namespace s ...
- C++习题 复数类--重载运算符2+
Description 定义一个复数类Complex,重载运算符"+",使之能用于复数的加法运算.参加运算的两个运算量可以都是类对象,也可以其中有一个是整数,顺序任意.例如,c1+ ...
- C++习题 复数类--重载运算符+
Description 定义一个复数类Complex,重载运算符"+",使之能用于复数的加法运算.将运算符函数重载为非成员.非友元的普通函数.编写程序,求两个复数之和. Input ...
- 15.C++-操作符重载、并实现复数类
首先回忆下以前学的函数重载 函数重载 函数重载的本质为相互独立的不同函数 通过函数名和函数参数来确定函数调用 无法直接通过函数名得到重载函数的入口地址 函数重载必然发生在同一个作用域中 类中的函数重载 ...
- C++ 实验 使用重载运算符实现一个复数类
实验目的: 1.掌握用成员函数重载运算符的方法 2.掌握用友元函数重载运算符的方法 实验要求: 1.定义一个复数类,描述一些必须的成员函数,如:构造函数,析构函数,赋值函数,返回数据成员值的函数等. ...
- 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式。 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Compl
因标题框有限,题目未显示完整,以下再放一份: 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Compl ...
- 侯捷《C++面向对象开发》——动手实现自己的复数类
前言 最近在看侯捷的一套课程<C++面向对象开发>,刚看完第一节introduction之后就被疯狂圈粉.感觉侯捷所提及所重视的部分也正是我一知半解的知识盲区,我之前也写过一些C++面向对 ...
- YTU 2443: C++习题 复数类--重载运算符3+
2443: C++习题 复数类--重载运算符3+ 时间限制: 1 Sec 内存限制: 128 MB 提交: 1368 解决: 733 题目描述 请编写程序,处理一个复数与一个double数相加的运 ...
随机推荐
- [ES]elasticsearch章1 ES各角色的分工
es集群里的master node.data node和client node到底是怎么个意思,分别有何特点? master节点 主要功能是维护元数据,管理集群各个节点的状态,数据的导入和查询都不会走 ...
- UX设计秘诀之注册表单设计,细节决定成败
以下内容由摹客团队翻译整理,仅供学习交流,摹客iDoc是支持智能标注和切图的产品协作设计神器. 说实话,现实生活中,又有多少人会真正喜欢填写表格?显然,并不多.因为填写表单这样的网页或App服务,并非 ...
- json数据映射填充到html元素显示
映射算法做了改进,支持name重复映射 <!DOCTYPE html> <html> <head> <meta charset="UTF-8&quo ...
- 如何用TFS build definition添加自动建立nuget package 步骤
参考网址:https://www.visualstudio.com/en-us/docs/build/steps/package/nuget-packager https://docs.nuget.o ...
- TCP的11种状态(转载)
TCP的11种状态 TCP三次握手建立连接 Tcp头部 六个标志位中,我们要用到三个: SYN:SYN= 1 表示这是一个连接请求或连接接受报文.在建立连接时用来进行同步序号(个人理解是,在建立连接的 ...
- openstack的Host Aggregates和Availability Zones
1.关系 Availability Zones 通常是对 computes 节点上的资源在小的区域内进行逻辑上的分组和隔离.例如在同一个数据中心,我们可以将 Availability Zones 规划 ...
- python3 print函数的用法
1. 输出字符串 >>> strHello = 'Hello World' >>> print (strHello) Hello World 2. 格式化输出整数 ...
- JMeter压力测试及服务器状态监控教程
转载自:https://blog.csdn.net/cbzcbzcbzcbz/article/details/78023327 前段时间公司需要对服务器进行压力测试,包括登录前的页面和登录后的页面,主 ...
- DDR4 PSOD输出的优点--DBI的优点
DDR4是JEDEC组织关于DRAM器件的下一代标准.DDR4主要是针对需要高带宽低功耗的场合.这些需求导致了DDR4芯片引入了一些新的特点,这些新的特点,导致在系统设计中,引入一些新的设计需求. D ...
- js中如何将数据获得2位小数以及对数据进行千分位划分
js中toFixed(n) 方法可把 数字四舍五入为指定小数位数n的数字,注意:这个方法只能对数据类型为Number的数据起作用,包括float,int等.例如: 123.12345.toFixe ...