BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)
5281: [Usaco2018 Open]Talent Show
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 79 Solved: 58
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
20 21
10 11
30 31
Sample Output
在这个例子中,总体来看最佳的才艺与重量的比值应该是仅用一头才艺值为11、重量为10的奶牛,但是由于我们需
要至少15单位的重量,最优解最终为使用这头奶牛加上才艺值为21、重量为20的奶牛。这样的话才艺与重量的比值
为(11+21)/(10+20)=32/30=1.0666666...,乘以1000向下取整之后得到1066。
题目链接:
http://www.lydsy.com/JudgeOnline/problem.php?id=5281
Solution
一看题面就知道要01分数规划。。。
假设答案为c,式子比较显然 ti的总和 / wi的总和 >= c
ti的总和 >= wi的总和 * c
然后就是二分c验证正确性。。
将每只牛的价值赋值为 ti - wi * c
显然如果有一种方案使得总的牛的价值不小于0,就说明c存在合法方案。。
由于W<=1000,我们可以直接DP。。
f [ i ] 表示wi总和不小于i时的最大价值总和。。
f [ i ] = max(f[j]+val)其中val表示当前牛的价值,并且i-j<=w
由于i和j的关系,要用单调队列维护。。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<cmath>
#include<set>
#define pa pair<LL,LL>
#define LL long long
#define ept 1e-5
using namespace std;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void Out(int a){
if(a>9) Out(a/10);
putchar(a%10+'0');
}
const double inf=1e9;
const LL mod=1e9+7;
const int N=300;
int n,m,cnt=1,W;
struct cow{
int w,s;
}a[N];
double f[2000],t[2000];
int q[2000]; int main(){
n=read();W=read();
for(int i=1;i<=n;++i){
a[i].w=read();a[i].s=read();
}
double l=0,r=10000,mid,y;
int x,L=1,R=0;
while(fabs(r-l)>ept){
//cout<<l<<" "<<r<<endl;
mid=(l+r)/2;
for(int i=0;i<=W;++i) f[i]=-inf;
f[0]=0;
for(int i=1;i<=n;++i){
x=a[i].w<=W?a[i].w:W;
y=(double)a[i].s-(double)mid*(double)a[i].w;
L=1;R=1;q[1]=0;
for(int j=1;j<=W;++j){
while(L<=R&&f[j]>f[q[R]]) --R;
q[++R]=j;
while(j-q[L]>x) ++L;
t[j]=f[q[L]]+y;
}
for(int j=1;j<=W;++j)
if(t[j]>f[j]) f[j]=t[j];
}
if(f[W]>=0) l=mid;
else r=mid;
}
l=l*1000;
int ans=l;
printf("%d\n",ans);
return 0;
}
This passage is made by Iscream-2001.
BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)的更多相关文章
- BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列
BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的 ...
- P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表
P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...
- BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)
题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...
- [BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]
题意 题目链接 分析 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) . 贪心选择,肯定区间的端点是极小或者极大值.特殊处理区间长度 \(\leq L\) ...
- 【BZOJ3316】JC loves Mkk 分数规划+单调队列
[BZOJ3316]JC loves Mkk Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整 ...
- bzoj 5281 [Usaco2018 Open]Talent Show——0/1分数规划
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5281 把分子乘1000,就能在整数里做了. 这种水题也花了这么久…… #include< ...
- bzoj 5281: [Usaco2018 Open]Talent Show【dp】
注意到sum_t比较小,所以设f[i][j]为选前i头牛,当前sum_t为j的最小sum_w值,转移是f[i][j]=min(f[i-1][j],f[i-1][j-t[i]]+w[i]),然后i维用滚 ...
- 【BZOJ 3316】JC loves Mkk 01分数规划+单调队列
单调栈不断吞入数据维护最值,数据具有单调性但不保证位置为其排名,同时可以按照进入顺序找出临近较值单调队列队列两端均可删除数据但只有队末可以加入数据,仍然不断吞入数据但同时可以额外刨除一些不符合条件的数 ...
- BZOJ4476 JSOI2015送礼物(分数规划+单调队列)
看到这个式子当然先二分答案.得max-min-(j-i+k)ans>=0. 显然max-min相同的情况下所选区间长度越短越好,所以max和min都应该取在边界.那么实际上我们根本不用管端点是否 ...
随机推荐
- jQuery Autocomplete 备忘录
之前使用过此 widget,如今再次需要,发现很多东西已经记不起来了,当然之前用的版本也不一样. 使用之前当然是先认真阅读官方的说明文档和示例,这点很重要,而不是东一块西一点的去网上瞎找资料.Opti ...
- SpringMVC 学习 十 SSM环境搭建(三)springMVC文件配置
SpringMVC文件配置的详细过程,可以查看springMVC环境搭建的注解配置篇<springMVC学习三 注解开发环境搭建> <?xml version="1.0&q ...
- UGUI图集
Editor->Project Settings 下面有sprite packer的模式.Disabled表示不启用它,Enabled For Builds 表示只有打包的时候才会启用它,Alw ...
- 2019.01.24 bzoj3125: CITY(轮廓线dp)
传送门 题意简述:给一个n∗mn*mn∗m的网格图,有的格子不能走,有的格子只能竖着走,有的格子只能横着走,问用一条回路覆盖所有能走的格子的方案数. 思路: 就是简单的轮廓线dpdpdp加了一点限制而 ...
- centos 下备份oracle数据
一.在xshell下root用户登录服务器 1.新建oracle数据库备份目录 mkdir -p /casnw/backup/oradata6910bak 2.设置目录权限为oinstall用户组的o ...
- 学以致用八---centos7.2 安装vim8+支持python3
目的:打造基于python的vim环境 也是在地铁上突然产生的一个想法,平时都是在pycharm上练习python,但有时候会提示激活码过期,又得上网找激活码,够折腾的.那何不在linux环境下来搭建 ...
- DDR4控制笔记
DDR4接口 A[17:0] input 为激活命令提 供行地址,为读.写命令地址输入:提供列地址,也为模式寄存器设 置提供操作码,A[16]只用于8Gb和16Gb,A[17]只用于16Gb,另外 ...
- wchar_t,char,string,wstring等的总结
一.LPSTR LPCSTR LPTSTR LPCTSTR等 确定的类型: LPSTR = CHAR * = char * LPCSTR = const CHAR * = char * //c意为co ...
- webService之helloword(java)
webservice 远程数据交互技术 1.导入jar包(如果是 maven项目导入项目坐标) 2.创建服务 3.测试服务 我们使用maven来做测试服务 pom.xml文件 <project ...
- ssh+注解开发 pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...