P3235 [HNOI2014]江南乐

Description

两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过1(即尽量均分)。求先手和后手谁必胜。

Input

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。

接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。


预处理每个单一游戏的\(SG\)值

小于\(F\)的置\(0\)必败

大于\(F\)的枚举拆分的堆数,把分开的用\(SG\)定理求一个异或和。

发现可以用乘除分块优化,对奇偶性相同的堆数当\(\lfloor\frac{n}{l}\rfloor\)一样时,答案一样。

预处理的复杂度\(O(n\sqrt n)\)

注意特判\(SG_1=0\)

直接\(SG\)定理回答询问就可以了。


Code:

#include <cstdio>
const int N=1e5+1;
int SG[N],T,F,n,is[N];
int hxor(int x,int k)
{
if(k&1) return x;
return 0;
}
int main()
{
scanf("%d%d",&T,&F);
for(int i=F;i<N;i++)
{
for(int l=1,r;l<=i;l=r+1)
{
r=i/(i/l);
is[hxor(SG[i/l],l-i%l)^hxor(SG[i/l+1],i%l)]=i;
++l;
if(l<=r&&l<=i) is[hxor(SG[i/l],l-i%l)^hxor(SG[i/l+1],i%l)]=i;
}
for(int j=0;is[j]==i;j++) SG[i]=j+1;
}
SG[1]=0;
while(T--)
{
scanf("%d",&n);
int sg=0;
for(int x,i=1;i<=n;i++) scanf("%d",&x),sg^=SG[x];
printf("%d ",sg>0);
}
return 0;
}

2018.12.19

洛谷 P3235 [HNOI2014]江南乐 解题报告的更多相关文章

  1. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  2. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  3. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  4. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  5. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  6. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  7. 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告

    [USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...

  8. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

  9. NOIP2015 D2T3 洛谷2680 BZOJ4326 运输计划 解题报告

    前言:个人认为这是历年NOIP中比较简单的最后一题了,因此将自己的思路与大家分享. 题目大意: 给一棵无根树,给出m条路径.允许将树上的一条边的权值改为0.求m条路径长度最大值的最小值.n,m< ...

随机推荐

  1. [工具]chrome添加crx扩展程序(附禁止复制破解扩展)

    Hello亲爱的观众朋友们大家好,我是09. 今天带来墙内用户安装chrome插件的方法. 1.打开扩展程序 2.把crx往里拖,欧了. ps.顺带安利chrome禁止复制破解扩展Enable Cop ...

  2. FM在特征组合中的应用

    原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun 特征组合   x1年龄 x2北京 x3上海 x4深圳 x5男 x6女 用户1 ...

  3. 用shell实现bat批处理的pause命令-追加改进

    我参考了这个文章:用shell实现bat的pause http://linux-wiki.cn/wiki/zh-hans/%E7%94%A8shell%E5%AE%9E%E7%8E%B0bat%E7% ...

  4. 为什么使用React Native

    React Native使你能够在Javascript和React的基础上获得完全一致的开发体验,构建世界一流的原生APP. React Native着力于提高多平台开发的开发效率 —— 仅需学习一次 ...

  5. ubuntu 相关软件设置

    软件篇 1. 网易云音乐软件 首先去官网下载网易云音乐客户端linux版,网址:http://music.163.com/#/download,选择linux版本,然后选择ubuntu 16.04(6 ...

  6. trustbox文件破解

    常见的破解方式,是要还原内容的二进制文件,删除加密壳部分的对应二进制数值,然后把剩下的内容保存下来,就实现了破解的任务.  淘宝破解链接:https://item.taobao.com/item.ht ...

  7. 团队项目开题Scrum Meeting报告

    团队项目开题Scrum Meeting报告 在10月30号星期四的晚上我们团队找到了给我们代码的王翊学长,由学长给我们讲解了他编写IOS平台上北航MOOC系统的架构和思路, 因为我们团队没有苹果公司的 ...

  8. 2-Fourth Scrum Meeting20151204

    任务安排 闫昊: 今日完成:设计本地数据库. 明日任务:请假.(最近代码写得多……很累……) 唐彬: 今日完成:ios客户端代码的了解. 明日任务:ios客户端代码的深度学习. 史烨轩: 今日完成: ...

  9. 树莓派 Raspberry-Pi 折腾系列:系统安装及一些必要的配置

    入手树莓派将近一个月了,很折腾,许多资源不好找,也很乱.简单整理一下自己用到的东西,方便以后自己或别人继续折腾. 0. 操作系统下载 树莓派官方 Raspbian 系统下载:http://www.ra ...

  10. 寒假作业第二篇随笔(A+B)

    Github链接:https://github.com/heihuifei/object-oriented A+B Format (20) Calculate a + b and output the ...