【51nod】1149 Pi的递推式
题解
我们把这个函数的递归形式画成一张图,会发现答案是到每个出度为0的点的路径的方案数
这个可以用组合数算
记录一下P[i]为i减几次PI减到4以内
如果P[i + 1] > P[i],那么转向的路径走P[i]次,否则走P[i] - 1次
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 1000005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const int MOD = 1000000007;
const db PI = acos(-1.0);
int N,fac[MAXN],inv[MAXN],invfac[MAXN],P[MAXN];
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int C(int n,int m) {
if(n < m) return 0;
return mul(mul(fac[n],invfac[m]),invfac[n - m]);
}
void Init() {
read(N);
fac[0] = 1;
for(int i = 1 ; i <= N ; ++i) fac[i] = mul(fac[i - 1],i);
inv[1] = 1;
for(int i = 2 ; i <= N ; ++i) inv[i] = mul(inv[MOD % i],MOD - MOD / i);
invfac[0] = 1;
for(int i = 1 ; i <= N ; ++i) invfac[i] = mul(invfac[i - 1],inv[i]);
}
void Solve() {
for(int i = 4 ; i <= N ; ++i) {
P[i] = floor((i - 4) / PI) + 1;
}
if(N < 4) {out(1);enter;return;}
int ans = 0;
for(int i = N ; i >= 3 ; --i) {
int s = N - i,t = P[i] - (P[i + 1] <= P[i]);
ans = inc(ans,C(s + t,s));
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【51nod】1149 Pi的递推式的更多相关文章
- 51nod 1149 Pi的递推式(组合数学)
传送门 解题思路 首先因为\(Pi\)不是整数,所以不能直接递推.这时我们要思考这个式子的实际意义,其实\(f(i)\)就可以看做从\(i\)这个点,每次可以向右走\(Pi\)步或\(1\)步,走到[ ...
- 51nod 1149 Pi的递推式 组合数
题目大意: \(F(x) = 1 (0 \leq x < 4)\) \(F(x) = F(x-1) + F(x-\pi) (4 \leq x)\) 给定\(n\),求\(F(n)\) 题解: 我 ...
- 51nod1149 Pi的递推式
基准时间限制:1 秒 空间限制:131072 KB 分值: 640 F(x) = 1 (0 <= x < 4) F(x) = F(x - 1) + F(x - pi) (4 <= x ...
- 51NOD 1149:Pi的递推式——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1149 F(x) = 1 (0 <= x < 4) F(x) ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- P1067Warcraft III 守望者的烦恼(十大矩阵问题之七求递推式)
https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她 ...
- hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)
题意:有一个递推式f(x) 当 x < 10 f(x) = x.当 x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + ...
- Tyche 2191 WYF的递推式
题目描述 WYF手中有这样一条递推式 WYF并不是想让你帮他做出结果,事实上,给定一个n,他能够迅速算出Fn.WYF只是想单纯的考验一下读者们. 输入描述 仅一行,三个整数N,F1,P 输出描述 仅一 ...
- HDU - 2604 Queuing(递推式+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- mongo同步到es
刚开始我找到的方案是利用 ElasticSearch 的 River 来同步数据,并在 GitHub 上到了 MongoDB River 插件:elasticsearch-river-mongodb. ...
- Java并发编程原理与实战三十六:阻塞队列&消息队列
一.阻塞队列 1.阻塞队列BlockingQueue ---->可以理解成生产者消费者的模式---->消费者要等待到生产者生产出来产品.---->而非阻塞队列ConcurrentLi ...
- Spring AOP注解为什么失效?90%Java程序员不知道
使用Spring Aop注解的时候,如@Transactional, @Cacheable等注解一般需要在类方法第一个入口的地方加,不然不会生效. 如下面几种场景 1.Controller直接调用Se ...
- 51nod 小Z的trie(Trie+广义SAM)
[题目链接] http://www.51nod.com/contest/problem.html#!problemId=1647 [题意] 给定一个n个字符串的Trie,每次询问一个字符串在Trie上 ...
- EF记录统一添加创建,修改时间
public class BaseEntity { public DateTime? DateCreated { get; set; } public string UserCreated { get ...
- Spring Aop、拦截器、过滤器的区别
Filter过滤器:拦截web访问url地址.Interceptor拦截器:拦截以 .action结尾的url,拦截Action的访问.Spring AOP拦截器:只能拦截Spring管理Bean的访 ...
- mysql 数据范围总结
MEDIUMINT 带符号的范围是-8388608到8388607,无符号的范围是0到16777215,使用3个字节. 一般情况下推荐使用 unsigned (无符号,即只接受正整数)
- hdu 1251 统计难题(字典树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1251 统计难题 Time Limit: 4000/2000 MS (Java/Others) M ...
- 一个罕见的MSSQL注入漏洞案例
一个罕见的MSSQL注入漏洞案例 这里作者准备分享一个在去年Google赏金计划中发现的相当罕见漏洞,也是作者在整个渗透测试生涯中唯一一次遇到的. 目标网站使用了微软 SQL Server 数据库并且 ...
- 脚本病毒分析扫描专题2-Powershell代码阅读扫盲
4.2.PowerShell 为了保障木马样本的体积很小利于传播.攻击者会借助宏->WMI->Powershell的方式下载可执行文件恶意代码.最近也经常会遇见利用Powershell通过 ...