POJ 1265:Area
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4725 | Accepted: 2135 |
Description
area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able
to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are
used. Figure 1 shows the course of a robot around an example area.
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula
he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that
simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair
means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself
except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100
units.
Output
by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
分析:
Pick定理:一个计算公式中顶点在格点上的多边形 面积公式 :S=a+b÷2-1,当中a表示多边形内部的点数,b表示多边形边界上的点数。s表示多边形的面积。
如图:例子二
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhlbmduYW5sZWU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" style="max-width:100%; border:none">
题目要求输出内部格点个数、边界格点个数、其面积。
1).多边形面积求解公式:
2). 多边形边界上的点数:
两顶点连线构成边界。
两顶点连线中(边界)所经过的点数即为,两顶点分别各自横纵坐标的差的最大公约数。
3)多边形内的点:
inside = area+1 - boundary/2;
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath> using namespace std; const int M = 1000 + 5;
int area;
int inside;
int boundary;
int x[M];
int y[M];
int p[M];
int q[M]; int boundary_work(int a, int b)
{
int t;
while( b )
{
t=b;
b=a%b;
a=t;
}
return a;
} int area_work(int a, int b, int c, int d)
{
return (a*d-b*c);
} int main()
{
int n, m;
scanf("%d", &n);
for(int cas=1; cas<=n; cas++)
{
scanf("%d", &m);
p[0]=0; q[0]=0;
inside=0; boundary=0; area=0;
for(int i=1; i<=m; i++)
{
scanf("%d%d", &x[i], &y[i]);
p[i]=p[i-1]+x[i];
q[i]=q[i-1]+y[i];
area += area_work( p[i-1], q[i-1], p[i], q[i] );
boundary += boundary_work( abs(x[i]), abs(y[i]) );
}
inside = area/2+1-boundary/2;
printf("Scenario #%d:\n%d %d %.1f\n\n", cas, inside, boundary, (double(area)/2));
} return 0;
}
POJ 1265:Area的更多相关文章
- poj 1654:Area 区域 ---- 叉积(求多边形面积)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19398 Accepted: 5311 利用叉积求多边形面 ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- Area POJ - 1265 -皮克定理-叉积
Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)
http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...
- POJ 3252:Round Numbers
POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...
- poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】
题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
随机推荐
- Sublime Text 下的Install Package安装方法
废话不多说.... 如果你是Sublime Text3用户,按下Ctrl+~呼出控制台,输入以下代码 import urllib.request,os,hashlib; h = '7183a2d3e9 ...
- JS AngualrJs 指令
本文基于 AngularJs 1.x 版本 内置指令 布尔属性 根据HTML标准的定义,布尔属性代表一个 true 或 false 值. 当这个属性出现时,这个属性的值就是 true (无论实际定义的 ...
- luoguP4208 [JSOI2008]最小生成树计数 矩阵树定理
题目大意: 求最小生成树的数量 曾今的我感觉这题十分的不可做 然而今天看了看,好像是个类模板的题.... 我们十分容易知道,记能出现在最小生成树中的边的集合为\(S\) 那么,只要是\(S\)中的边构 ...
- java的反射机制(第二篇)
本文转载自:http://c.biancheng.net/cpp/html/1781.html 要理解RTTI在Java中的工作原理,首先必须知道类型信息在运行时是如何表示的,这项工作是由“Class ...
- FindWindow和FindWindowEx
函数原型:FindWindow(lpszClassName,lpszWindowName) 参数:lpszClassName--窗口类名;lpszWindowName--窗口标题 功能:查找窗口,未找 ...
- python开发_thread_布朗运动
这篇blog是非常有趣的,是的,他非常有趣 下面我将给大家介绍有关python中thread来实现布朗运动的一个例子 下面是运行效果: ================================ ...
- linux octave 4.0安装
octave,linux下的安装.官网:Octive,请参考以下资料: 安装教程:Ubuntu通过源码编译安装Octave 4.0
- Disable File System Redirector For Windows x64 (Python recipe)(转)
This disables the Windows File System Redirector.When a 32 bit program runs on a 64 bit operating sy ...
- HDU 4727 The Number Off of FFF (水题)
The Number Off of FFF Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- Flex4+spring+hibernate+BlazeDS整合案例
http://wenku.baidu.com/link?url=7v5xAyD2nvChQRT60QewpvAASFHMZNvD0OxX11OASYvae8jbVNsr5I000TwwYOlChzq0 ...