POJ 1265:Area
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4725 | Accepted: 2135 |
Description
area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able
to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are
used. Figure 1 shows the course of a robot around an example area.
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula
he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that
simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair
means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself
except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100
units.
Output
by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
分析:
Pick定理:一个计算公式中顶点在格点上的多边形 面积公式 :S=a+b÷2-1,当中a表示多边形内部的点数,b表示多边形边界上的点数。s表示多边形的面积。
如图:例子二
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhlbmduYW5sZWU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" style="max-width:100%; border:none">
题目要求输出内部格点个数、边界格点个数、其面积。
1).多边形面积求解公式:
2). 多边形边界上的点数:
两顶点连线构成边界。
两顶点连线中(边界)所经过的点数即为,两顶点分别各自横纵坐标的差的最大公约数。
3)多边形内的点:
inside = area+1 - boundary/2;
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath> using namespace std; const int M = 1000 + 5;
int area;
int inside;
int boundary;
int x[M];
int y[M];
int p[M];
int q[M]; int boundary_work(int a, int b)
{
int t;
while( b )
{
t=b;
b=a%b;
a=t;
}
return a;
} int area_work(int a, int b, int c, int d)
{
return (a*d-b*c);
} int main()
{
int n, m;
scanf("%d", &n);
for(int cas=1; cas<=n; cas++)
{
scanf("%d", &m);
p[0]=0; q[0]=0;
inside=0; boundary=0; area=0;
for(int i=1; i<=m; i++)
{
scanf("%d%d", &x[i], &y[i]);
p[i]=p[i-1]+x[i];
q[i]=q[i-1]+y[i];
area += area_work( p[i-1], q[i-1], p[i], q[i] );
boundary += boundary_work( abs(x[i]), abs(y[i]) );
}
inside = area/2+1-boundary/2;
printf("Scenario #%d:\n%d %d %.1f\n\n", cas, inside, boundary, (double(area)/2));
} return 0;
}
POJ 1265:Area的更多相关文章
- poj 1654:Area 区域 ---- 叉积(求多边形面积)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19398 Accepted: 5311 利用叉积求多边形面 ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- Area POJ - 1265 -皮克定理-叉积
Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)
http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...
- POJ 3252:Round Numbers
POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...
- poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】
题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
随机推荐
- Web2.0应用程序的7条原则
个人看好Web的发展潜力,本文字摘自<Collective Intelligence 实战> 网络是平台 使用传统许可模式软件的公司或用户必须运行软件.定期更新至最新版本,以及扩展它来满足 ...
- luoguP3952 [NOIP2017]时间复杂度 模拟
原本只是想看下多久能码完时间复杂度 然后在30min内就码完了,然后一A了???? 首先,这题完全可以离线做 我们先把所有的操作读完,判断合不合法之后,再去判断和标准答案的关系 具体而言 把所有的操作 ...
- CF1042C Array Product 分类讨论+贪心
考虑有无负数(负数的个数为奇视作“有”,否则为“无”)和有无零 无负数无零,全部合并即可 无负数有零,那么把零合并起来,删掉零 有负数无零,把最大的负数找出来,删掉,合并剩余的数 有负数有零,把零和最 ...
- [LearnOpenGL]照相机的变换、坐标系、摄像机
前言 跟着LearnOpenGL上学着做项目,的确对于知识掌握得更清晰一些了. 第一个项目 第一个项目,是关于简单的熟悉矩阵变换的,创建了10个立方体,代码如下. // 视图矩阵,看作是一个照相机 g ...
- Codeforces Beta Round #97 (Div. 1) C. Zero-One 数学
C. Zero-One 题目连接: http://codeforces.com/contest/135/problem/C Description Little Petya very much lik ...
- POJ 1654 Area 计算几何
#include<stdio.h> #include<string.h> #include<iostream> #include<math.h> usi ...
- 使用socket.io+redis来实现基本的聊天室应用场景
本文根据socket.io与Redis来实现基本的聊天室应用场景,主要表现于多个浏览器之间的信息同步和实时更新. 只是简单记录了一下, 更详细的内容可以参考后续的一篇补充文章: 使用node.js + ...
- WordPress 客户端软件列表
Windows: BlogDesk BlogJet Blog Writer Chrysanth WebStory Deepest Sender (Firefox或SeaMonkey扩展,跨平台- De ...
- ParseFloat有超长的小数位数的解决
描述一下sum=parseFloat(num1)+parseFloat(num2),这个个sum=113.32000000000002,最后用了个Math.round(sum* 100)/100,解决 ...
- Moq的一些基本用法
本篇体验Moq的一些基本用法.首先通过NuGet安装Moq.包括: 模拟方法的返回值 模拟方法后执行回调函数 模拟方法依次返回多个值 模拟第二次调用方法返回异常 直接返回被模拟方法的原始返回值 模拟泛 ...