传送门啦

分析:

我最开始想的是跑两遍最短路,然后记录一下最短路走了哪些边(如果有两条最短路就选经过边多的),打上标记。两边之后找两次都标记的边有多少就行了。

但。。。我并没有实现出来。

最后让我们看一下正解:

四边spfa+拓扑排序求最长边

先让我们考虑如何求两对点最短路的最长公共路径?

1.先明白:如果有一条边,它的起点到最短路的起点 + 终点到最短路的终点 + 边权 == 最短路起点到终点的距离,那么这条边一定在最短路上。

也就是说如果有一条边i:from -> to权值是w在最短路x -> y上,那么有disx->from + disto->y + edge[i].w == disx->y

2.所以就可以把两条最短路径都经过的边重新建图

3.最后就是求最长路即可(显然图是DAG 拓扑排序可以求)。

注意!!注意!!注意!!

1.最开始我们建的是无向图,也就是说:dis_{from->to} + wdisfrom−>to​+w 和 dis_{to->from} + wdisto−>from​+w是一样的。

2.重新建图的时候我们建的是有向图。

最短路和普通的spfaspfa没什么区别,稍微改了一下dis数组,那样就不用开4个dis了。

拓扑序也差不多,ind[i]ind[i]表示第ii点的入度。

总体来说,这个题主要还是想法,还有对基础算法的应用。挺好一个题。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = ; inline int read(){
char ch = getchar(); int f = , x = ;
while(ch > '' || ch < ''){if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = (x << ) + (x << ) + ch - ''; ch = getchar();}
return x * f;
} int n,m,x,y,xx,yy,u,v,w;
struct Edge{
int from,to,next,val;
int tag;
}edge[maxn * maxn] , e[maxn * maxn];
int head1[maxn],tot1,head2[maxn],tot2;
int dis[][maxn],ind[maxn];
bool vis[maxn];
int f[maxn]; void add(int u,int v,int w){
edge[++tot1].to = v;
edge[tot1].from = u;
edge[tot1].next = head1[u];
edge[tot1].val = w;
head1[u] = tot1;
} void addedge(int u,int v,int w){
e[++tot2].from = u;
e[tot2].to = v;
e[tot2].val = w;
e[tot2].next = head2[u];
head2[u] = tot2;
} void spfa(int s,int flag){
queue<int> q;
for(int i=;i<=n;i++) dis[flag][i] = 1e9;
memset(vis,false,sizeof(vis));
q.push(s);
dis[flag][s] = ; vis[s] = true;
while(!q.empty()){
int cur = q.front();
q.pop(); vis[cur] = false;
for(int i=head1[cur];i;i=edge[i].next){
int v = edge[i].to;
if(dis[flag][v] > dis[flag][cur] + edge[i].val){
dis[flag][v] = dis[flag][cur] + edge[i].val;
if(vis[v] == ){
q.push(v);
vis[v] = true;
}
}
}
}
} inline void topo(){
queue<int> que;
que.push(x);
while(!que.empty()){
int cur = que.front();
que.pop();
for(int i=head2[cur];i;i=e[i].next){
int v = e[i].to , w = e[i].val;
--ind[v];
if(!ind[v]) {
que.push(v);
f[v] = max(f[v] , f[cur] + e[i].tag * w);
}
}
}
} void rebuild(){
for(int i=;i<=tot1;i++){
int v = edge[i].to , u = edge[i].from , w = edge[i].val;
if(dis[][u] + w + dis[][v] == dis[][y]){
addedge(u , v , w);
if(dis[][u] + w + dis[][v] == dis[][yy] || dis[][v] + w + dis[][u] == dis[][yy])
//为了处理无向图的问题
e[tot2].tag = ;
ind[v]++;
}
}
} int main(){
n = read(); m = read();
x = read(); y = read(); xx = read(); yy = read();
for(int i=;i<=m;i++){
u = read(); v = read(); w = read();
add(u , v , w);
add(v , u , w);
}
spfa(x , );
spfa(y , );
spfa(xx , );
spfa(yy , );
rebuild();
topo();
printf("%d\n",f[y]);
return ;
}

洛谷P2149 Elaxia的路线的更多相关文章

  1. 洛谷2149 Elaxia的路线(dp+最短路)

    QwQ好久没更新博客了,颓废了好久啊,来补一点东西 题目大意 给定两个点对,求两对点间最短路的最长公共路径. 其中\(n,m\le 10^5\) 比较简单吧 就是跑四遍最短路,然后把最短路上的边拿出来 ...

  2. P2149 Elaxia的路线

    P2149 Elaxia的路线 题意简述: 在一个n(n<=1500)个点的无向图里找两对点之间的最短路径的最长重合部分,即在保证最短路的情况下两条路径的最长重合长度(最短路不为一) 思路: 两 ...

  3. 洛谷 P4478 [BJWC2018]上学路线

    洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...

  4. 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告

    P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...

  5. 洛谷——P2149 [SDOI2009]Elaxia的路线

    P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...

  6. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  7. Java实现 洛谷 Car的旅行路线

    输入输出样例 输入样例#1: 1 3 10 1 3 1 1 1 3 3 1 30 2 5 7 4 5 2 1 8 6 8 8 11 6 3 输出样例#1: 47.5 import java.util. ...

  8. 洛谷 P2149 [SDOI2009]Elaxia的路线

    题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...

  9. 洛谷—— P2149 [SDOI2009]Elaxia的路线

    https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两 ...

随机推荐

  1. CentOS7单节点部署redis主从复制和sentinel

    准备一台机器,系统版本为CentOS7. 部署redis 1.下载软件包 # wget http://download.redis.io/releases/redis-3.2.8.tar.gz 2.解 ...

  2. 遇到问题----linux-----linux 打开文件数 too many open files 解决方法

    在运行某些命令或者 tomcat等服务器持续运行 一段时间后可能遇到   too many open files. 出现这句提示的原因是程序打开的文件/socket连接数量超过系统设定值. 查看每个用 ...

  3. Android资源混淆 + 混淆忽略 .so库

    安装包立减1M--微信Android资源混淆打包工具http://mp.weixin.qq.com/s?__biz=MzAwNDY1ODY2OQ==&mid=208135658&idx ...

  4. python安装pip、numpy、scipy、statsmodels、pandas、matplotlib等

    1.安装python 2.安装numpy(开源的数值计算扩展,可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多. 很多库都是以此库为依 ...

  5. 微信小程序退款 处理类

    <?php /** * 微信小程序退款 处理类参考https://www.cnblogs.com/afei-qwerty/p/7922982.html * */ class WeixinRefu ...

  6. matlab和C语言实现最小二乘法

    参考:https://blog.csdn.net/zengxiantao1994/article/details/70210662 Matlab代码: N = ; x = [ ]; y = [ ]; ...

  7. Spring 手动提交事务

    在使用Spring声明式事务时,不需要手动的开启事务和关闭事务,但是对于一些场景则需要开发人员手动的提交事务,比如说一个操作中需要处理大量的数据库更改,可以将大量的数据库更改分批的提交,又比如一次事务 ...

  8. 使用subprocess.Poen注意事项

    学习使用python已经有四个月了,subprocess这个执行linux中shell命令的函数已经用过无数次了,踩到的坑也有几个,写出来分享一下,欢迎大家拍砖头. 1.shell命令中若有管道,一定 ...

  9. Could not parse multipart servlet request; nested exception is java.io.IOException: The temporary upload location

    spring-boot项目,生产环境运行一段时间后,上传图片报错,如下: threw exception [Request processing failed; nested exception is ...

  10. Java开发者应该列入年度计划的5件事

    本文写了我今年计划要做的5件事.为了能跟踪计划执行的进度,就把这些事都列了出来.我觉得这些事对其它Java开发者而言也是不错的参考方向. 1.开发一个应用,通过Java来操作一种NoSQL数据库实现存 ...