传送门啦

分析:

我最开始想的是跑两遍最短路,然后记录一下最短路走了哪些边(如果有两条最短路就选经过边多的),打上标记。两边之后找两次都标记的边有多少就行了。

但。。。我并没有实现出来。

最后让我们看一下正解:

四边spfa+拓扑排序求最长边

先让我们考虑如何求两对点最短路的最长公共路径?

1.先明白:如果有一条边,它的起点到最短路的起点 + 终点到最短路的终点 + 边权 == 最短路起点到终点的距离,那么这条边一定在最短路上。

也就是说如果有一条边i:from -> to权值是w在最短路x -> y上,那么有disx->from + disto->y + edge[i].w == disx->y

2.所以就可以把两条最短路径都经过的边重新建图

3.最后就是求最长路即可(显然图是DAG 拓扑排序可以求)。

注意!!注意!!注意!!

1.最开始我们建的是无向图,也就是说:dis_{from->to} + wdisfrom−>to​+w 和 dis_{to->from} + wdisto−>from​+w是一样的。

2.重新建图的时候我们建的是有向图。

最短路和普通的spfaspfa没什么区别,稍微改了一下dis数组,那样就不用开4个dis了。

拓扑序也差不多,ind[i]ind[i]表示第ii点的入度。

总体来说,这个题主要还是想法,还有对基础算法的应用。挺好一个题。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = ; inline int read(){
char ch = getchar(); int f = , x = ;
while(ch > '' || ch < ''){if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = (x << ) + (x << ) + ch - ''; ch = getchar();}
return x * f;
} int n,m,x,y,xx,yy,u,v,w;
struct Edge{
int from,to,next,val;
int tag;
}edge[maxn * maxn] , e[maxn * maxn];
int head1[maxn],tot1,head2[maxn],tot2;
int dis[][maxn],ind[maxn];
bool vis[maxn];
int f[maxn]; void add(int u,int v,int w){
edge[++tot1].to = v;
edge[tot1].from = u;
edge[tot1].next = head1[u];
edge[tot1].val = w;
head1[u] = tot1;
} void addedge(int u,int v,int w){
e[++tot2].from = u;
e[tot2].to = v;
e[tot2].val = w;
e[tot2].next = head2[u];
head2[u] = tot2;
} void spfa(int s,int flag){
queue<int> q;
for(int i=;i<=n;i++) dis[flag][i] = 1e9;
memset(vis,false,sizeof(vis));
q.push(s);
dis[flag][s] = ; vis[s] = true;
while(!q.empty()){
int cur = q.front();
q.pop(); vis[cur] = false;
for(int i=head1[cur];i;i=edge[i].next){
int v = edge[i].to;
if(dis[flag][v] > dis[flag][cur] + edge[i].val){
dis[flag][v] = dis[flag][cur] + edge[i].val;
if(vis[v] == ){
q.push(v);
vis[v] = true;
}
}
}
}
} inline void topo(){
queue<int> que;
que.push(x);
while(!que.empty()){
int cur = que.front();
que.pop();
for(int i=head2[cur];i;i=e[i].next){
int v = e[i].to , w = e[i].val;
--ind[v];
if(!ind[v]) {
que.push(v);
f[v] = max(f[v] , f[cur] + e[i].tag * w);
}
}
}
} void rebuild(){
for(int i=;i<=tot1;i++){
int v = edge[i].to , u = edge[i].from , w = edge[i].val;
if(dis[][u] + w + dis[][v] == dis[][y]){
addedge(u , v , w);
if(dis[][u] + w + dis[][v] == dis[][yy] || dis[][v] + w + dis[][u] == dis[][yy])
//为了处理无向图的问题
e[tot2].tag = ;
ind[v]++;
}
}
} int main(){
n = read(); m = read();
x = read(); y = read(); xx = read(); yy = read();
for(int i=;i<=m;i++){
u = read(); v = read(); w = read();
add(u , v , w);
add(v , u , w);
}
spfa(x , );
spfa(y , );
spfa(xx , );
spfa(yy , );
rebuild();
topo();
printf("%d\n",f[y]);
return ;
}

洛谷P2149 Elaxia的路线的更多相关文章

  1. 洛谷2149 Elaxia的路线(dp+最短路)

    QwQ好久没更新博客了,颓废了好久啊,来补一点东西 题目大意 给定两个点对,求两对点间最短路的最长公共路径. 其中\(n,m\le 10^5\) 比较简单吧 就是跑四遍最短路,然后把最短路上的边拿出来 ...

  2. P2149 Elaxia的路线

    P2149 Elaxia的路线 题意简述: 在一个n(n<=1500)个点的无向图里找两对点之间的最短路径的最长重合部分,即在保证最短路的情况下两条路径的最长重合长度(最短路不为一) 思路: 两 ...

  3. 洛谷 P4478 [BJWC2018]上学路线

    洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...

  4. 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告

    P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...

  5. 洛谷——P2149 [SDOI2009]Elaxia的路线

    P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...

  6. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  7. Java实现 洛谷 Car的旅行路线

    输入输出样例 输入样例#1: 1 3 10 1 3 1 1 1 3 3 1 30 2 5 7 4 5 2 1 8 6 8 8 11 6 3 输出样例#1: 47.5 import java.util. ...

  8. 洛谷 P2149 [SDOI2009]Elaxia的路线

    题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...

  9. 洛谷—— P2149 [SDOI2009]Elaxia的路线

    https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两 ...

随机推荐

  1. Android Studio添加文件注释头模板?

    Self Settings: as中class文件头注释: File -> Settings -> Editor -> File and Code Templates -> 右 ...

  2. 解题:CQOI 2017 老C的方块

    题面 看起来很像网络流的二分图套路题,然后我们大力观察(题目定义的相邻我用引号括起来,应该能看懂) 发现“相邻”的一对方格如果各自连着一个一个方格就gg了,于是对于所有这些“相邻”的方格,我们有两种选 ...

  3. 使用 python 将 "\r\n" 转换为 "\n"

    众所周知, Linux 下没有 "\r\n", 而 windows 下文本工具默认打开文件时使用 t 模式, 使得写入一行结尾的换行符为 "\r\n", 这样造 ...

  4. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  5. 一次ajax请求导致status为canceled的原因小记

    偶然碰到一个小Bug ajax请求执行后返回了一个canceled(状态码) 但是后台却接受了参数并且执行成功0.0 刚看到这个状态的时候是一脸懵逼的.... 之前并没见过这样的状态码 经过参数确认并 ...

  6. 《编程快速上手》--web抓取--利用webbrowser模块的mapIT.py

    1.代码如下 #! python3 # mapIT.py - Launches a map in the browser using an address from the # command lin ...

  7. golang 中的 time 包的 Ticker

    真实的应用场景是:在测试收包的顺序的时候,加了个 tick 就发现丢包了 那么来看一个应用例子: package main import ( "fmt" "runtime ...

  8. C语言中的指针和内存泄漏几种情况

    引言 原文地址:http://www.cnblogs.com/archimedes/p/c-point-memory-leak.html,转载请注明源地址. 对于任何使用C语言的人,如果问他们C语言的 ...

  9. 动态规划:POJ 3616 Milking Time

    #include <iostream> #include <algorithm> #include <cstring> #include <cstdio> ...

  10. 获取assets文件内容,raw内容

    1.均采用流的方式获取里面的内容 assets context.getAssets().open(“fileName”); raw InputStream inputStream = context. ...