You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1st, 3rd, 5th, ...) jumps in the series are called odd numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are called even numbered jumps.

You may from index i jump forward to index j (with i < j) in the following way:

  • During odd numbered jumps (ie. jumps 1, 3, 5, ...), you jump to the index j such that A[i] <= A[j] and A[j] is the smallest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
  • During even numbered jumps (ie. jumps 2, 4, 6, ...), you jump to the index j such that A[i] >= A[j] and A[j] is the largest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
  • (It may be the case that for some index i, there are no legal jumps.)

A starting index is good if, starting from that index, you can reach the end of the array (index A.length - 1) by jumping some number of times (possibly 0 or more than once.)

Return the number of good starting indexes.

Example 1:

Input: [10,13,12,14,15]
Output: 2
Explanation:
From starting index i = 0, we can jump to i = 2 (since A[2] is the smallest among A[1], A[2], A[3], A[4] that is greater or equal to A[0]), then we can't jump any more.
From starting index i = 1 and i = 2, we can jump to i = 3, then we can't jump any more.
From starting index i = 3, we can jump to i = 4, so we've reached the end.
From starting index i = 4, we've reached the end already.
In total, there are 2 different starting indexes (i = 3, i = 4) where we can reach the end with some number of jumps.

Example 2:

Input: [2,3,1,1,4]
Output: 3
Explanation:
From starting index i = 0, we make jumps to i = 1, i = 2, i = 3: During our 1st jump (odd numbered), we first jump to i = 1 because A[1] is the smallest value in (A[1], A[2], A[3], A[4]) that is greater than or equal to A[0]. During our 2nd jump (even numbered), we jump from i = 1 to i = 2 because A[2] is the largest value in (A[2], A[3], A[4]) that is less than or equal to A[1]. A[3] is also the largest value, but 2 is a smaller index, so we can only jump to i = 2 and not i = 3. During our 3rd jump (odd numbered), we jump from i = 2 to i = 3 because A[3] is the smallest value in (A[3], A[4]) that is greater than or equal to A[2]. We can't jump from i = 3 to i = 4, so the starting index i = 0 is not good. In a similar manner, we can deduce that:
From starting index i = 1, we jump to i = 4, so we reach the end.
From starting index i = 2, we jump to i = 3, and then we can't jump anymore.
From starting index i = 3, we jump to i = 4, so we reach the end.
From starting index i = 4, we are already at the end.
In total, there are 3 different starting indexes (i = 1, i = 3, i = 4) where we can reach the end with some number of jumps.

Example 3:

Input: [5,1,3,4,2]
Output: 3
Explanation:
We can reach the end from starting indexes 1, 2, and 4.

Note:

  1. 1 <= A.length <= 20000
  2. 0 <= A[i] < 100000

Approach: #1: DP + Binary search. [C++]

class Solution {
public:
int oddEvenJumps(vector<int>& A) {
const int n = A.size();
vector<vector<int>> dp(n+1, vector<int>(2, 0));
dp[n-1][0] = dp[n-1][1] = 1;
map<int, int> m;
m[A[n-1]] = n - 1;
int ans = 1;
for (int i = n-2; i >= 0; --i) {
auto u = m.lower_bound(A[i]);
if (u != m.end()) {
int idx = u->second;
dp[i][1] = dp[idx][0];
}
auto d = m.upper_bound(A[i]);
if (d != m.begin()) {
int idx = prev(d)->second;
dp[i][0] = dp[idx][1];
}
if (dp[i][1] == 1) ++ans;
m[A[i]] = i;
}
return ans;
}
};

  

Approach #2: DP. [Java]

class Solution {
public int oddEvenJumps(int[] A) {
int n = A.length, res = 1;
boolean[] higher = new boolean[n], lower = new boolean[n];
higher[n-1] = lower[n-1] = true;
TreeMap<Integer, Integer> map = new TreeMap<>();
map.put(A[n-1], n-1); for (int i = n-2; i >= 0; --i) {
Map.Entry hi = map.ceilingEntry(A[i]), lo = map.floorEntry(A[i]);
if (hi != null) higher[i] = lower[(int)hi.getValue()];
if (lo != null) lower[i] = higher[(int)lo.getValue()];
if (higher[i]) ++res;
map.put(A[i], i);
} return res;
}
}

  

Analysis:

Odd jump: find the smallest value greater than self(up)

Even jump: find the largest value smaller than self(down)

map<int, int> -> min index of the given value

dp[i][1] : can reach end starting with a up jump

dp[i][0] : can reach end starting with a down jump

Start from the (n-2)th element, find a valid up jump index j (lower_bound), and find a valid down jump index k (prev(upper_bound)).

dp[i][1] = dp[j][0]; // next jump will be odd (down)

dp[i][0] = dp[j][1]; // next jump will be even (up)

ans = sum(dp[*][1])

Time Complexity: O(nlogn)

Space Complexity: O(n)

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-975-odd-even-jump/

https://blog.csdn.net/yaomingyang/article/details/78748130

http://www.cplusplus.com/reference/iterator/prev/

https://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html

975. Odd Even Jump的更多相关文章

  1. LC 975. Odd Even Jump

    You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1 ...

  2. 【LeetCode】975. Odd Even Jump 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  3. 「Leetcode」975. Odd Even Jump(Java)

    分析 注意到跳跃的方向是一致的,所以我们需要维护一个数接下来跳到哪里去的问题.换句话说,就是对于一个数\(A_i\),比它大的最小值\(A_j\)是谁?或者反过来. 这里有两种方案,一种是单调栈,简单 ...

  4. [Swift]LeetCode975. 奇偶跳 | Odd Even Jump

    You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1 ...

  5. leetcode hard

    # Title Solution Acceptance Difficulty Frequency     4 Median of Two Sorted Arrays       27.2% Hard ...

  6. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  7. 【Leetcode周赛】从contest-111开始。(一般是10个contest写一篇文章)

    Contest 111 (题号941-944)(2019年1月19日,补充题解,主要是943题) 链接:https://leetcode.com/contest/weekly-contest-111 ...

  8. ARM详细指令集

    算术和逻辑指令 ADC : 带进位的加法 (Addition with Carry) ADC{条件}{S} <dest>, <op 1>, <op 2> dest ...

  9. Complete The Pattern #6 - Odd Ladder

    Complete The Pattern #6 - Odd Ladder Task: You have to write a function pattern which creates the fo ...

随机推荐

  1. Oracle登录命令

    1.运行SQLPLUS工具 C:\Users\wd-pc>sqlplus 2.直接进入SQLPLUS命令提示符 C:\Users\wd-pc>sqlplus /nolog 3.以OS身份连 ...

  2. python使用input()来接受字符串时一直报错“xxx is not defined”

    报错信息: “Please input your guess: gussTraceback (most recent call last):  File "coinGuessGame.py& ...

  3. laravel数据库操作

    一.配置文件路径:/.env DB_CONNECTION=mysql DB_HOST=127.0.0.1 DB_PORT= DB_DATABASE=test DB_USERNAME=root DB_P ...

  4. 【Maven】安装及配置(Linux)

    本文介绍Linux环境下安装Maven 安装环境和软件 系统:Linux(CentOS) 软件:apache-maven-3.3.9-bin.tar.gz(解压版). 安装步骤 maven是基于Jav ...

  5. 类的const成员函数,是如何改变const对象的?

    我们知道类里面的const的成员函数一般是不允许改变类对象的,但是我们知道const 类型的指针是可以强制类型转出成非const指针的,同样的道理,this指针也可以被强制类型转换 class Y{ ...

  6. 482. License Key Formatting

    static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); class Solution { publ ...

  7. @GeneratedValue和@GenericGenerator(转)

    一.JPA通用策略生成器 通过annotation来映射hibernate实体的,基于annotation的hibernate主键标识为@Id, 其生成规则由@GeneratedValue设定的.这里 ...

  8. 如何在Linux中统计一个进程的线程数(转)

    方法一: /proc proc 伪文件系统,它驻留在 /proc 目录,这是最简单的方法来查看任何活动进程的线程数. /proc 目录以可读文本文件形式输出,提供现有进程和系统硬件相关的信息如 CPU ...

  9. origin里用c语言编程

    学习自白东升老师的origin8.0课程. 其实是originC语言.origin中大多绘图和处理功能都是originC语言完成的,可以同时按下ctrl和shift然后点击相应的功能,就会出现每个按钮 ...

  10. HDU 2037 今年暑假不AC (区间贪心)

    题意:又是中文题... 析:先说一下区间贪心的一个定理,选择不相交的区间:数轴上有n个开区间(ai, bi).选择尽量多的区间,使得这些区间两两不相交,贪心策略是,一定是选bi小的.(想一下为什么). ...