You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1st, 3rd, 5th, ...) jumps in the series are called odd numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are called even numbered jumps.

You may from index i jump forward to index j (with i < j) in the following way:

  • During odd numbered jumps (ie. jumps 1, 3, 5, ...), you jump to the index j such that A[i] <= A[j] and A[j] is the smallest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
  • During even numbered jumps (ie. jumps 2, 4, 6, ...), you jump to the index j such that A[i] >= A[j] and A[j] is the largest possible value.  If there are multiple such indexes j, you can only jump to the smallest such index j.
  • (It may be the case that for some index i, there are no legal jumps.)

A starting index is good if, starting from that index, you can reach the end of the array (index A.length - 1) by jumping some number of times (possibly 0 or more than once.)

Return the number of good starting indexes.

Example 1:

Input: [10,13,12,14,15]
Output: 2
Explanation:
From starting index i = 0, we can jump to i = 2 (since A[2] is the smallest among A[1], A[2], A[3], A[4] that is greater or equal to A[0]), then we can't jump any more.
From starting index i = 1 and i = 2, we can jump to i = 3, then we can't jump any more.
From starting index i = 3, we can jump to i = 4, so we've reached the end.
From starting index i = 4, we've reached the end already.
In total, there are 2 different starting indexes (i = 3, i = 4) where we can reach the end with some number of jumps.

Example 2:

Input: [2,3,1,1,4]
Output: 3
Explanation:
From starting index i = 0, we make jumps to i = 1, i = 2, i = 3: During our 1st jump (odd numbered), we first jump to i = 1 because A[1] is the smallest value in (A[1], A[2], A[3], A[4]) that is greater than or equal to A[0]. During our 2nd jump (even numbered), we jump from i = 1 to i = 2 because A[2] is the largest value in (A[2], A[3], A[4]) that is less than or equal to A[1]. A[3] is also the largest value, but 2 is a smaller index, so we can only jump to i = 2 and not i = 3. During our 3rd jump (odd numbered), we jump from i = 2 to i = 3 because A[3] is the smallest value in (A[3], A[4]) that is greater than or equal to A[2]. We can't jump from i = 3 to i = 4, so the starting index i = 0 is not good. In a similar manner, we can deduce that:
From starting index i = 1, we jump to i = 4, so we reach the end.
From starting index i = 2, we jump to i = 3, and then we can't jump anymore.
From starting index i = 3, we jump to i = 4, so we reach the end.
From starting index i = 4, we are already at the end.
In total, there are 3 different starting indexes (i = 1, i = 3, i = 4) where we can reach the end with some number of jumps.

Example 3:

Input: [5,1,3,4,2]
Output: 3
Explanation:
We can reach the end from starting indexes 1, 2, and 4.

Note:

  1. 1 <= A.length <= 20000
  2. 0 <= A[i] < 100000

Approach: #1: DP + Binary search. [C++]

class Solution {
public:
int oddEvenJumps(vector<int>& A) {
const int n = A.size();
vector<vector<int>> dp(n+1, vector<int>(2, 0));
dp[n-1][0] = dp[n-1][1] = 1;
map<int, int> m;
m[A[n-1]] = n - 1;
int ans = 1;
for (int i = n-2; i >= 0; --i) {
auto u = m.lower_bound(A[i]);
if (u != m.end()) {
int idx = u->second;
dp[i][1] = dp[idx][0];
}
auto d = m.upper_bound(A[i]);
if (d != m.begin()) {
int idx = prev(d)->second;
dp[i][0] = dp[idx][1];
}
if (dp[i][1] == 1) ++ans;
m[A[i]] = i;
}
return ans;
}
};

  

Approach #2: DP. [Java]

class Solution {
public int oddEvenJumps(int[] A) {
int n = A.length, res = 1;
boolean[] higher = new boolean[n], lower = new boolean[n];
higher[n-1] = lower[n-1] = true;
TreeMap<Integer, Integer> map = new TreeMap<>();
map.put(A[n-1], n-1); for (int i = n-2; i >= 0; --i) {
Map.Entry hi = map.ceilingEntry(A[i]), lo = map.floorEntry(A[i]);
if (hi != null) higher[i] = lower[(int)hi.getValue()];
if (lo != null) lower[i] = higher[(int)lo.getValue()];
if (higher[i]) ++res;
map.put(A[i], i);
} return res;
}
}

  

Analysis:

Odd jump: find the smallest value greater than self(up)

Even jump: find the largest value smaller than self(down)

map<int, int> -> min index of the given value

dp[i][1] : can reach end starting with a up jump

dp[i][0] : can reach end starting with a down jump

Start from the (n-2)th element, find a valid up jump index j (lower_bound), and find a valid down jump index k (prev(upper_bound)).

dp[i][1] = dp[j][0]; // next jump will be odd (down)

dp[i][0] = dp[j][1]; // next jump will be even (up)

ans = sum(dp[*][1])

Time Complexity: O(nlogn)

Space Complexity: O(n)

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-975-odd-even-jump/

https://blog.csdn.net/yaomingyang/article/details/78748130

http://www.cplusplus.com/reference/iterator/prev/

https://docs.oracle.com/javase/8/docs/api/java/util/Map.Entry.html

975. Odd Even Jump的更多相关文章

  1. LC 975. Odd Even Jump

    You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1 ...

  2. 【LeetCode】975. Odd Even Jump 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  3. 「Leetcode」975. Odd Even Jump(Java)

    分析 注意到跳跃的方向是一致的,所以我们需要维护一个数接下来跳到哪里去的问题.换句话说,就是对于一个数\(A_i\),比它大的最小值\(A_j\)是谁?或者反过来. 这里有两种方案,一种是单调栈,简单 ...

  4. [Swift]LeetCode975. 奇偶跳 | Odd Even Jump

    You are given an integer array A.  From some starting index, you can make a series of jumps.  The (1 ...

  5. leetcode hard

    # Title Solution Acceptance Difficulty Frequency     4 Median of Two Sorted Arrays       27.2% Hard ...

  6. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  7. 【Leetcode周赛】从contest-111开始。(一般是10个contest写一篇文章)

    Contest 111 (题号941-944)(2019年1月19日,补充题解,主要是943题) 链接:https://leetcode.com/contest/weekly-contest-111 ...

  8. ARM详细指令集

    算术和逻辑指令 ADC : 带进位的加法 (Addition with Carry) ADC{条件}{S} <dest>, <op 1>, <op 2> dest ...

  9. Complete The Pattern #6 - Odd Ladder

    Complete The Pattern #6 - Odd Ladder Task: You have to write a function pattern which creates the fo ...

随机推荐

  1. Html的Padding,Margin自己理解图

    Html的Padding,Margin自己理解图.

  2. 对于Android开发,啥是高级工程师?

    最近一直在思考自己的技术方向.新的技术永远都是层出不穷,kotlin,flutter,小程序,轻应用等等,但是作为一个老鸟,新的东西,永远都是学不完的,想在新的技术上迭代学习出一个新高度,而增加自己的 ...

  3. Linux ld命令

    一.简介 http://blog.sina.com.cn/s/blog_a0dc7dcf01014c5s.html 二.选项 http://blog.sina.com.cn/s/blog_a0dc7d ...

  4. ubuntu 设置静态ip地址不生效问题

    出现了一个问题是,配置了静态ip地址之后,重启网络服务,查看ip地址是生效的,过会再看就 不生效了,查看网上说是由于 network-manager 管理ip地址时候出现的冲突,将network-ma ...

  5. laravel配置路由出现404

    nginx配置上加一句话 location / { #try_files $uri $uri/ =; try_files $uri $uri/ /index.php?$query_string; }

  6. 第十届Mockplus ▪ UXPA用户体验西南赛区决赛成功举行

    九月的重庆,秋意渐浓. 伴随着凉爽的秋风,第十届Mockplus·UXPA国际用户体验创新大赛(UXD Award2018)西南赛区决赛于9月16日下午在四川美术学院-虎溪校区成功举办.来自西南区域各 ...

  7. iis 应用程序预热

    <applicationPools> <add name="appname" managedRuntimeVersion="v4.0" sta ...

  8. 【Win】编写简单的bat文件

    bat是dos下的批处理文件.批处理文件是无格式的文本文件,它包含一条或多条命令.它的文件扩展名为 .bat 或 .cmd.在命令提示下键入批处理文件的名称,或者双击该批处理文件,系统就会调用Cmd. ...

  9. C++加速程序的全局执行函数

    static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); C++的cin和cout在输入输出时,会先 ...

  10. 2018.09.23 codeforces 1053B. Vasya and Good Sequences(前缀和)

    传送门 考试的时候卡了一会儿. 显然这个答案只跟二进制位为1的数量有关. 还有一个显然的结论. 对于一个区间[l,r][l,r][l,r],如果其中单个数二进制位为1的数量最大值不到区间所有数二进制位 ...