可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和。

  于是先求出上述定义中的质数个数,线性筛即可。然后对每个最短时间求方案数,非常显然的组合数。最好特判一下l=1的情况,毕竟如果1作为质数会有奇怪的事。

  我的线性筛……跑的几乎跟埃氏筛差不多慢。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,l,r,prime[N],fac[N],inv[N],cnt,sum,ans;
bool flag[N];
int C(int n,int m){return 1ll*fac[n]*inv[n-m]%P*inv[m]%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5323.in","r",stdin);
freopen("bzoj5323.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
l=read(),r=read();n=r-l+;
fac[]=;for (int i=;i<=n;i++) fac[i]=1ll*i*fac[i-]%P;
inv[]=inv[]=;for (int i=;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=n;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
if (l==) sum=;
else
{
for (int i=;i<l;i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=;j<=cnt&&prime[j]*i<l;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
sum=-cnt;
for (int i=l;i<=r;i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=;j<=cnt&&prime[j]*i<=r;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
sum+=cnt;
}
for (int i=sum;i<=n;i++) ans=(ans+1ll*fac[n-sum]*C(i-,sum-)%P*i)%P;
cout<<1ll*ans*fac[sum]%P;
return ;
}

BZOJ5323 JXOI2018游戏(线性筛+组合数学)的更多相关文章

  1. BZOJ5323 [Jxoi2018]游戏 【数论/数学】

    题目链接 BZOJ5323 题解 有一些数是不能被别的数筛掉的 这些数出现最晚的位置就是该排列的\(t(p)\) 所以我们只需找出所有这些数,线性筛一下即可,设有\(m\)个 然后枚举最后的位置 \[ ...

  2. BZOJ5323 JXOI2018 游戏

    传送门 这是我见过的为数不多的良心九怜题之一. 题目大意 有一堆屋子,编号为$l,l+1...r-1,r$,你每次会走入一个没走入过的房子,然后这个房子以及编号为这个房子编号的倍数的房子就会被自动标记 ...

  3. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  4. [JXOI2018]游戏 (线性筛,数论)

    [JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...

  5. luogu P4562 [JXOI2018]游戏 组合数学

    LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...

  6. 【题解】JXOI2018游戏(组合数)

    [题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...

  7. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  8. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  9. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

随机推荐

  1. 关于Netty的学习前总结

    摘要 前段时间一直在学习netty因为工作忙的原因没有写一个学习的总结,今天抽个空先把总结写了吧.事先声明,本文不会详细的介绍每一个部分不过每个部分都会附上讲解详细的url.本文只是为了解释通Nett ...

  2. 在WebGL场景中进行棋盘操作的实验

    这篇文章讨论如何在基于Babylon.js的WebGL场景中,建立棋盘状的地块和多个可选择的棋子对象,在点选棋子时显示棋子的移动范围,并且在点击移动范围内的空白地块时向目标地块移动棋子.在这一过程中要 ...

  3. Unity — — UGUI之背包物品拖放

    最新背包代码: Unity3D — — UGUI之简易背包 Unity版本:2017.3 功能:用UGUI实现简单的背包物品拖放/交换功能 一.简介 在UGUI下,物品的拖放脚本实现主要依赖于Unit ...

  4. Netty源码分析第5章(ByteBuf)---->第5节: directArena分配缓冲区概述

    Netty源码分析第五章: ByteBuf 第五节: directArena分配缓冲区概述 上一小节简单分析了PooledByteBufAllocator中, 线程局部缓存和arean的相关逻辑, 这 ...

  5. JavaWeb项目通过调用cmd实现备份数据库的功能

    1.别急着上车,先测试一下能否成功调用cmd,可以尝试通过cmd命令打开计算器,代码如下:     2.能成功打开计算器后,证明调用cmd的方法是没错的,现在把cmd命令字符串改成我们备份数据库的 命 ...

  6. Visual Studio AI配置环境

    参考链接:http://www.cnblogs.com/ms-uap/p/9123033.html 背景: 1.能联网的电脑:Win7 64 SP1 2.鼠标.键盘.显示器好使 3.已安装VS2010 ...

  7. MathExam第二次作业

    第二次作业:MathExam 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 20 30 • ...

  8. 信息安全系统设计基础_exp1

    北京电子科技学院(BESTI) 实     验    报     告 课程:信息安全系统设计基础 班级:1353 姓名:吴子怡.郑伟 学号:20135313.20135322 指导教师: 娄嘉鹏 实验 ...

  9. Leetcode题库——7.反转整数

    @author: ZZQ @software: PyCharm @file: IntReverse.py @time: 2018/9/16 16:36 要求:整数反转(给定一个 32 位有符号整数,将 ...

  10. VMware上配置DPDK环境并运行实例程序

    1. 在虚拟机VMware上配置环境 VMware安装:http://www.zdfans.com/html/5928.html Ubuntu:https://www.ubuntu.com/downl ...