1.  参考说明

参考文档:

https://cwiki.apache.org/confluence/display/Hive/GettingStarted

2.  安装环境说明

2.1.  环境说明

CentOS7.4+ Hadoop2.7.5的伪分布式环境

主机名

NameNode

SecondaryNameNode

DataNodes

centoshadoop.smartmap.com

192.168.1.80

192.168.1.80

192.168.1.80

Hadoop的安装目录为:/opt/hadoop/hadoop-2.7.5

3.  安装

3.1.  Hive下载

https://hive.apache.org/downloads.html

3.2.  Hive解压

将下载的apache-hive-2.3.3-bin.tar.gz解压到/opt/hadoop/hive-2.3.3目录下

4.  配置

4.1.  修改profile文件

vi
/etc/profile

export HIVE_HOME=/opt/hadoop/hive-2.3.3

export PATH=$PATH:$HIVE_HOME/bin

export CLASSPATH=$CLASSPATH:$HIVE_HOME/lib

4.2.  将JDK升级为1.8版本

将JDK切换成1.8的版本,并修改所有与JAVA_HOME相关的变量

4.3.  安装MySQL数据库

4.3.1.  下载MySQL源

[root@centoshadoop soft]# wget
http://repo.mysql.com/mysql57-community-release-el7-8.noarch.rpm

4.3.2.  安装MySQL源

[root@centoshadoop soft]# yum install
mysql57-community-release-el7-8.noarch.rpm

4.3.3.  安装MySQL

[root@centoshadoop soft]# yum install mysql-server

4.3.4.  启动mysql服务

[root@centoshadoop soft]# systemctl start mysqld

[root@centoshadoop soft]# systemctl enable mysqld

4.3.5.  重置root密码

MySQL5.7会在安装后为root用户生成一个随机密码, MySQL为root用户生成的随机密码通过mysqld.log文件可以查找到

[root@centoshadoop soft]# grep 'temporary password'
/var/log/mysqld.log

2018-05-22T09:23:43.115820Z 1 [Note] A temporary
password is generated for root@localhost: 2&?SYJpBOdwo

[root@centoshadoop soft]#

[ambari@master opt]$ mysql -u root -p

Enter
password:

Welcome
to the MySQL monitor.  Commands end with
; or \g.

Your
MySQL connection id is 2

Server
version: 5.7.22

…....

mysql> set global
validate_password_policy=0;

Query
OK, 0 rows affected (0.00 sec)

mysql> set global
validate_password_length=3;

Query
OK, 0 rows affected (0.00 sec)

mysql> set global
validate_password_mixed_case_count=0;

Query
OK, 0 rows affected (0.00 sec)

mysql> set global
validate_password_number_count=0;

Query
OK, 0 rows affected (0.00 sec)

mysql> set global
validate_password_special_char_count=0;

Query
OK, 0 rows affected (0.00 sec)

mysql> alter user
'root'@'localhost' identified by 'gis123';

Query
OK, 0 rows affected (0.00 sec)

mysql> flush privileges;

Query
OK, 0 rows affected (0.01 sec)

mysql> SHOW VARIABLES LIKE
'validate_password%';

+--------------------------------------+-------+

|
Variable_name                        | Value |

+--------------------------------------+-------+

|
validate_password_check_user_name    | OFF   |

|
validate_password_dictionary_file    |       |

|
validate_password_length             | 4     |

|
validate_password_mixed_case_count   | 0     |

|
validate_password_number_count       | 0     |

|
validate_password_policy             | LOW   |

|
validate_password_special_char_count | 0     |

+--------------------------------------+-------+

7 rows
in set (0.01 sec)

mysql> set global
validate_password_length=3;

Query
OK, 0 rows affected (0.00 sec)

mysql> alter user
'root'@'localhost' identified by 'gis';

Query
OK, 0 rows affected (0.00 sec)

mysql> flush
privileges;

Query
OK, 0 rows affected (0.00 sec)

mysql> quit

Bye

[ambari@master opt]$ mysql -u root -p

Enter
password:

4.3.6.  开放数据库访问权限

[root@localsource ~]# mysql -u root
-p

Enter
password:

Welcome
to the MySQL monitor.  Commands end with
; or \g.

……

Type
'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> GRANT ALL PRIVILEGES
ON *.* TO 'root'@'%' IDENTIFIED BY 'gis' WITH GRANT OPTION;

Query
OK, 0 rows affected, 1 warning (0.00 sec)

mysql> FLUSH
PRIVILEGES;

Query
OK, 0 rows affected (0.00 sec)

mysql> quit

4.3.7.  安装mysql jdbc驱动

4.3.7.1. 上传软件包到/opt/java/目录下

上传软件包mysql-connector-java-5.1.46.jar到/opt/java/jdk1.8.0_171/lib/目录下

4.3.7.2. 测试

import
java.sql.*;

public
class SqlTest {

public static void main(String[]
args) throws Exception {

try {

String
driver="com.mysql.jdbc.Driver";

String
url="jdbc:mysql://127.0.0.1:3306/mysql?serverTimezone=Asia/Shanghai&useUnicode=true&characterEncoding=utf8&useSSL=false";

String user="root";

String password="gis";

Class.forName(driver);

Connection
conn=DriverManager.getConnection(url,user,password);

Statement
stmt=conn.createStatement();

System.out.println("mysql test
successful!");

stmt.close();

conn.close();

} catch (Exception e) {

e.printStackTrace();

System.out.println("mysql test
fail!");

}

}

}

编译执行

javac
SqlTest.java

java
SqlTest

4.4.  修改Hive的配置文件

cd
/opt/hadoop/hive-2.3.3/conf/

cp
hive-env.sh.template hive-env.sh

4.5.  配置Hive的Metastore

[root@centoshadoop conf]# cp /opt/hadoop/hive-2.3.3/conf/hive-default.xml.template
/opt/hadoop/hive-2.3.3/conf/hive-site.xml

[root@centoshadoop conf]# vi
/opt/hadoop/hadoop-2.7.5/etc/hadoop/mapred-site.xml

[root@centoshadoop conf]# mkdir -p
/opt/hadoop/hive-2.3.3/temp/hadoopUser

<property>

<name>javax.jdo.option.ConnectionDriverName</name>

<value>com.mysql.jdbc.Driver</value>

<description>Driver class name
for a JDBC metastore</description>

</property>

<property>

<name>javax.jdo.option.ConnectionURL</name>

<value>

jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNotExist=true&amp;serverTimezone=Asia/Shanghai&amp;useUnicode=true&amp;characterEncoding=utf8&amp;useSSL=false

</value>

<description>

JDBC connect string for a JDBC metastore.

</description>

</property>

<property>

<name>javax.jdo.option.ConnectionUserName</name>

<value>root</value>

<description>Username to use
against metastore database</description>

</property>

<property>

<name>javax.jdo.option.ConnectionPassword</name>

<value>gis</value>

<description>password to use
against metastore database</description>

</property>

<property>

<name>hive.metastore.warehouse.dir</name>

<value>/user/hive/warehouse</value>

<description>location of
default database for the warehouse</description>

</property>

<property>

<name>hive.exec.local.scratchdir</name>

<value>/opt/hadoop/hive-2.3.3/temp/${system:user.name}</value>

<description>Local scratch
space for Hive jobs</description>

</property>

<property>

<name>hive.downloaded.resources.dir</name>

<value>/opt/hadoop/hive-2.3.3/temp/${hive.session.id}_resources</value>

<description>Temporary local
directory for added resources in the remote file
system.</description>

</property>

<property>

<name>hive.querylog.location</name>

<value>/opt/hadoop/hive-2.3.3/temp/${system:user.name}</value>

<description>Location of Hive
run time structured log file</description>

</property>

<property>

<name>hive.server2.logging.operation.log.location</name>

<value>/opt/hadoop/hive-2.3.3/temp/${system:user.name}/operation_logs</value>

<description>Top level directory where operation
logs are stored if logging functionality is
enabled</description>

</property>

5.  启动Hadoop

5.1.  启动YARN与HDFS

cd
/opt/hadoop/hadoop-2.7.5/sbin

start-all.sh

5.2.  启动historyserver

cd
/opt/hadoop/hadoop-2.7.5/sbin

mr-jobhistory-daemon.sh start historyserver

6.  初始化元数据

[root@centoshadoop bin]# cp
/opt/java/jdk1.8.0_171/lib/mysql-connector-java-5.1.46.jar
/opt/hadoop/hive-2.3.3/lib/

[root@centoshadoop bin]# schematool -dbType  mysql -initSchema

7.  应用Hive工具

7.1.  启动运行Hive的交互式Shell环境

cd
/opt/hadoop/hive-2.3.3/bin

hive

7.2.  列出表格

hive>
show
tables;

7.3.  创建表格

hive>
CREATE
TABLE records (year STRING, temperature INT, quality INT) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';

OK

Time
taken: 3.755 seconds

7.4.  加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/ncdc/micro-tab/sample.txt' OVERWRITE
INTO TABLE records;

Loading
data to table default.records

OK

Time
taken: 1.412 seconds

[root@centoshadoop micro-tab]# hadoop fs -ls /user/hive/warehouse

Found 1
items

drwxr-xr-x   - hadoop supergroup          0 2018-05-22 19:12 /user/hive/warehouse/records

[root@centoshadoop micro-tab]# hadoop fs -ls
/user/hive/warehouse/records

Found 1
items

7.5.  查询数据

hive>
SELECT
year, MAX(temperature) FROM records WHERE temperature != 9999 AND quality IN
(0, 1, 4, 5, 9) GROUP BY year;

WARNING:
Hive-on-MR is deprecated in Hive 2 and may not be available in the future
versions. Consider using a different execution engine (i.e. spark, tez) or using
Hive 1.X releases.

Query ID
= root_20180522191929_43c997e9-c72d-4fbd-b54a-35865d4f3a3f

Total
jobs = 1

Launching Job 1 out of 1

7.6.  退出

hive>
exit;

7.7.  分区与桶

7.7.1.  分区

7.7.1.1. 创建分区表

hive>
DROP
TABLE IF EXISTS logs;

hive>
CREATE
TABLE logs (ts BIGINT, line STRING) PARTITIONED BY (dt STRING, country
STRING);

7.7.1.2. 加载数据到分区表

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/partitions/file1' INTO TABLE
logs PARTITION (dt='2001-01-01', country='GB');

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/partitions/file2' INTO TABLE
logs PARTITION (dt='2001-01-01', country='GB');

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/partitions/file3' INTO TABLE
logs PARTITION (dt='2001-01-01', country='US');

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/partitions/file4' INTO TABLE
logs PARTITION (dt='2001-01-02', country='GB');

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/partitions/file5' INTO TABLE
logs PARTITION (dt='2001-01-02', country='US');

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/partitions/file6' INTO TABLE
logs PARTITION (dt='2001-01-02', country='US');

7.7.1.3. 显示分区表的分区

hive>
SHOW
PARTITIONS logs;

OK

dt=2001-01-01/country=GB

dt=2001-01-01/country=US

dt=2001-01-02/country=GB

dt=2001-01-02/country=US

Time
taken: 4.439 seconds, Fetched: 4 row(s)

7.7.1.4. 查询数据

hive>
SELECT
ts, dt, line FROM logs WHERE country='GB';

OK

1       2001-01-01      Log line 1

2       2001-01-01      Log line 2

4       2001-01-02      Log line 4

Time
taken: 1.922 seconds, Fetched: 3 row(s)

7.7.2.  桶

7.7.2.1. 创建一般的表

hive>
DROP
TABLE IF EXISTS users;

hive>
CREATE
TABLE users (id INT, name STRING);

7.7.2.2. 为表加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/tables/users.txt' OVERWRITE INTO
TABLE users;

hive>
dfs -cat
/user/hive/warehouse/users/users.txt;

0Nat

2Joe

3Kay

4Ann

hive>

7.7.2.3. 创建分桶表

hive>
CREATE
TABLE bucketed_users (id INT, name STRING) CLUSTERED BY (id) INTO 4
BUCKETS;

OK

Time
taken: 0.081 seconds

hive>
DROP
TABLE bucketed_users;

OK

Time
taken: 1.118 seconds

7.7.2.4. 创建分桶排序表

hive>
CREATE TABLE bucketed_users (id INT, name
STRING) CLUSTERED BY (id) SORTED
BY (id) INTO 4 BUCKETS;

7.7.2.5. 为分桶排序表加载数据

hive>
SELECT *
FROM users;

OK

0       Nat

2       Joe

3       Kay

4       Ann

Time
taken: 1.366 seconds, Fetched: 4 row(s)

hive>
SET
hive.enforce.bucketing=true;

hive>
INSERT
OVERWRITE TABLE bucketed_users SELECT * FROM users;

7.7.2.6. 查看分分桶排序表中的HDFS的文件

hive>
dfs -ls
/user/hive/warehouse/bucketed_users;

Found 4
items

-rwxr-xr-x   1 hadoop supergroup         12 2018-05-22 21:07
/user/hive/warehouse/bucketed_users/000000_0

-rwxr-xr-x   1 hadoop supergroup          0 2018-05-22 21:07
/user/hive/warehouse/bucketed_users/000001_0

-rwxr-xr-x   1 hadoop supergroup          6 2018-05-22 21:07
/user/hive/warehouse/bucketed_users/000002_0

-rwxr-xr-x   1 hadoop supergroup          6 2018-05-22 21:07
/user/hive/warehouse/bucketed_users/000003_0

hive>
dfs -cat
/user/hive/warehouse/bucketed_users/000000_0;

0Nat

4Ann

7.7.2.7. 从指定的桶中进行取样

hive> SELECT * FROM bucketed_users TABLESAMPLE(BUCKET 1 OUT
OF 4 ON id);

OK

0       Nat

4       Ann

Time
taken: 0.393 seconds, Fetched: 2 row(s)

hive>
SELECT *
FROM bucketed_users TABLESAMPLE(BUCKET 1 OUT OF 2 ON id);

OK

0       Nat

4       Ann

2       Joe

hive>
SELECT *
FROM users TABLESAMPLE(BUCKET 1 OUT OF 4 ON rand());

OK

Time
taken: 0.072 seconds

7.8.  索引

7.8.1.  创建表

hive>
DROP
TABLE IF EXISTS users_extended;

hive>
CREATE
TABLE users_extended (id INT, name STRING, gender STRING);

7.8.1.1. 加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/tables/users_extended.txt'
OVERWRITE INTO TABLE users_extended;

7.8.1.2. 创建索引

hive>
DROP
INDEX IF EXISTS users_index;

hive>
CREATE
INDEX users_index

ON
TABLE users_extended (gender)

AS
'BITMAP' WITH DEFERRED REBUILD;

OK

Time
taken: 0.342 seconds

7.8.1.3. 应用索引重新构建数据

hive>
ALTER
INDEX users_index ON users_extended REBUILD;

7.8.1.4. 查询数据

hive>
SELECT *
FROM users_extended WHERE gender = 'F';

OK

3       Kay     F

4       Ann     F

Time
taken: 0.135 seconds, Fetched: 2 row(s)

7.9.  存贮格式

7.9.1.  创建一般的表

hive>
DROP
TABLE IF EXISTS users;

hive>
CREATE
TABLE users (id INT, name STRING);

7.9.2.  为表加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/tables/users.txt' OVERWRITE INTO
TABLE users;

7.9.3.  SequenceFile文件

7.9.3.1. 创建SequenceFile文件与加载数据

hive>
DROP
TABLE IF EXISTS users_seqfile;

hive>
SET
hive.exec.compress.output=true;

hive>
SET
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.DeflateCodec;

hive>
SET
mapreduce.output.fileoutputformat.compress.type=BLOCK;

hive>
CREATE
TABLE users_seqfile STORED AS SEQUENCEFILE AS SELECT id, name FROM
users;

7.9.3.2. 查询数据

hive>
SELECT *
from users_seqfile;

OK

0       Nat

2       Joe

3       Kay

4       Ann

Time
taken: 0.409 seconds, Fetched: 4 row(s)

7.9.4.  Avro文件

7.9.4.1. 创建Avro文件

hive>
DROP
TABLE IF EXISTS users_avro;

hive>
SET
hive.exec.compress.output=true;

hive>
SET
avro.output.codec=snappy;

hive>
CREATE
TABLE users_avro (id INT, name STRING) STORED AS AVRO;

OK

Time
taken: 0.234 seconds

7.9.4.2. 加载数据

hive>
INSERT
OVERWRITE TABLE users_avro SELECT * FROM users;

7.9.4.3. 查询数据

hive>
SELECT *
from users_avro;

OK

0       Nat

2       Joe

3       Kay

4       Ann

Time
taken: 0.21 seconds, Fetched: 4 row(s)

7.9.5.  Parquet文件

7.9.5.1. 创建Parquet文件

hive>
DROP
TABLE IF EXISTS users_parquet;

7.9.5.2. 创建Parquet文件与加载数据

hive>
CREATE
TABLE users_parquet STORED AS PARQUET AS SELECT * FROM users;

7.9.5.3. 查询数据

hive>
SELECT *
from users_parquet;

OK

SLF4J:
Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J:
Defaulting to no-operation (NOP) logger implementation

SLF4J:
See http://www.slf4j.org/codes.html#StaticLoggerBinder for further
details.

0       Nat

2       Joe

3       Kay

4       Ann

7.9.6.  ORCFile文件

7.9.6.1. 创建ORCFile文件

hive>
DROP
TABLE IF EXISTS users_orc;

7.9.6.2. 创建ORCFile文件与加载数据

hive>
CREATE
TABLE users_orc STORED AS ORCFILE AS SELECT * FROM users;

7.9.6.3. 查询数据

hive> SELECT * from users_orc;

OK

0       Nat

2       Joe

3       Kay

4       Ann

Time
taken: 0.086 seconds, Fetched: 4 row(s)

7.9.7.  定制系列化

7.9.7.1. 创建文件

hive>
DROP
TABLE IF EXISTS stations;

hive>
CREATE
TABLE stations (usaf STRING, wban STRING, name STRING)

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'

WITH
SERDEPROPERTIES (

"input.regex" = "(\\d{6}) (\\d{5}) (.{29})
.*"

);

7.9.7.2. 加载数据

hive>
LOAD
DATA LOCAL INPATH
"/root/hapood/data/input/ncdc/metadata/stations-fixed-width.txt" INTO TABLE
stations;

7.9.7.3. 查询数据

hive>
SELECT *
FROM stations LIMIT 4;

OK

010000  99999   BOGUS NORWAY

010003  99999   BOGUS NORWAY

010010  99999   JAN MAYEN

010013  99999   ROST

Time
taken: 0.103 seconds, Fetched: 4 row(s)

hive>

7.10.    多表插入

7.10.1.         创建一般的表

hive> DROP TABLE IF exists records2;

hive>
CREATE
TABLE records2 (station STRING, year STRING, temperature INT, quality INT) ROW
FORMAT DELIMITED FIELDS TERMINATED BY '\t';

7.10.2.         为表加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/ncdc/micro-tab/sample2.txt' OVERWRITE
INTO TABLE records2;

7.10.3.         创建其它的多张表

hive>
DROP
TABLE IF exists stations_by_year;

OK

Time
taken: 0.03 seconds

hive> DROP TABLE IF exists records_by_year;

OK

Time
taken: 0.016 seconds

hive>
DROP
TABLE IF exists good_records_by_year;

OK

Time
taken: 0.012 seconds

hive>
CREATE
TABLE stations_by_year (year STRING, num INT);

OK

Time
taken: 0.101 seconds

hive>
CREATE
TABLE records_by_year (year STRING, num INT);

OK

Time
taken: 0.166 seconds

hive>
CREATE
TABLE good_records_by_year (year STRING, num INT);

OK

Time
taken: 0.073 seconds

7.10.4.         将一张表中的数据插入到其它多张表中

hive>
FROM
records2

INSERT
OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station)  GROUP BY
year

INSERT
OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year

INSERT
OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature !=
9999 AND quality IN (0, 1, 4, 5, 9) GROUP BY year;

7.10.4.1.      查询数据

hive>
SELECT *
FROM stations_by_year;

OK

1949    2

1950    2

Time
taken: 0.207 seconds, Fetched: 2 row(s)

hive>
SELECT *
FROM records_by_year;

OK

1949    2

1950    3

Time
taken: 0.133 seconds, Fetched: 2 row(s)

hive>
SELECT *
FROM good_records_by_year;

OK

1949    2

1950    3

Time
taken: 0.091 seconds, Fetched: 2 row(s)

7.10.4.2.      多表联接查询数据

hive>
SELECT
stations_by_year.year, stations_by_year.num, records_by_year.num,
good_records_by_year.num FROM stations_by_year

JOIN
records_by_year ON (stations_by_year.year = records_by_year.year)

JOIN
good_records_by_year ON (stations_by_year.year =
good_records_by_year.year);

Stage-Stage-4: Map: 1   Cumulative CPU: 2.19 sec   HDFS Read: 7559 HDFS Write: 133 SUCCESS

Total
MapReduce CPU Time Spent: 2 seconds 190 msec

OK

1949    2       2       2

1950    2       3       3

Time
taken: 29.217 seconds, Fetched: 2 row(s)

7.11.    类型转换

7.11.1.1.      创建表

hive>
DROP
TABLE IF EXISTS dummy;

hive>
CREATE
TABLE dummy (value STRING);

hive>
DROP TABLE IF EXISTS simple;

hive>
CREATE TABLE simple ( col1 TIMESTAMP );

7.11.1.2.      加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/dummy.txt' OVERWRITE INTO TABLE
dummy;

7.11.1.3.      插入记录

hive>
INSERT
OVERWRITE TABLE simple SELECT '2012-01-02 03:04:05.123456789' FROM
dummy;

7.11.1.4.      String转Int

hive>
SELECT CAST('X' AS INT) from dummy;

hive>
SELECT 2 + '2' FROM dummy;

7.11.1.5.      Bool转Int

hive>
SELECT * from dummy;

hive>
SELECT 2 + CAST(TRUE AS INT) FROM dummy;

7.11.1.6.      字符连接

hive>
SELECT concat('Truth: ', TRUE) FROM simple;

hive>
SELECT concat('Date: ', col1) FROM simple;

7.11.1.7.      Date转BigInt

hive>
SELECT 2 + CAST(col1 AS BIGINT) FROM simple;

7.11.1.8.      Date计算

hive>
SELECT 2 + col1 FROM simple;

hive>
SELECT 2L + col1 FROM simple;

hive>
SELECT 2.0 + col1 FROM simple;

7.12.    复杂数据类型(Array、Map、Struct、Union)

7.12.1.1.      创建表

hive>
DROP
TABLE IF EXISTS complex;

hive>
CREATE
TABLE complex (

c1 ARRAY<INT>,

c2 MAP<STRING, INT>,

c3 STRUCT<a:STRING, b:INT, c:DOUBLE>,

c4 UNIONTYPE<STRING, INT>

);

7.12.1.2.      加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/hive/types/complex.txt' OVERWRITE
INTO TABLE complex;

7.12.1.3.      查询数据

hive> SELECT c1[0], c2['b'], c3.c, c4 FROM
complex;

OK

1       2       1.0     {1:63}

Time
taken: 0.179 seconds, Fetched: 1 row(s)

7.13.    排序

7.13.1.1.      创建表

hive>
DROP
TABLE IF EXISTS records2;

hive>
CREATE
TABLE records2 (station STRING, year STRING, temperature INT, quality INT) ROW
FORMAT DELIMITED FIELDS TERMINATED BY '\t';

7.13.1.2.      加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/ncdc/micro-tab/sample2.txt'  OVERWRITE INTO
TABLE records2;

7.13.1.3.      查询排序

hive>
FROM
records2 SELECT year, temperature DISTRIBUTE BY year SORT BY year ASC,
temperature DESC;

7.14.    连接

7.14.1.1.      创建表

hive>
DROP TABLE IF EXISTS sales;

hive>
CREATE TABLE sales (name STRING, id INT) ROW FORMAT DELIMITED FIELDS TERMINATED
BY '\t';

hive>
DROP TABLE IF EXISTS things;

hive>
CREATE TABLE things (id INT, name STRING) ROW FORMAT DELIMITED FIELDS TERMINATED
BY '\t';

7.14.1.2.      加载数据

hive> LOAD DATA LOCAL INPATH
'/root/hapood/data/input/hive/joins/sales.txt' OVERWRITE INTO TABLE
sales;

Loading
data to table default.sales

OK

Time
taken: 1.445 seconds

hive> LOAD DATA LOCAL INPATH
'/root/hapood/data/input/hive/joins/things.txt' OVERWRITE INTO TABLE
things;

Loading
data to table default.things

OK

Time
taken: 0.485 seconds

7.14.1.3.      单表查询

hive> SELECT * FROM sales;

OK

Joe     2

Hank    4

Ali     0

Eve     3

Hank    2

Time
taken: 1.36 seconds, Fetched: 5 row(s)

hive>
SELECT *
FROM things;

OK

2       Tie

4       Coat

3       Hat

1       Scarf

Time
taken: 0.137 seconds, Fetched: 4 row(s)

7.14.1.4.      内连接查询

hive>
SELECT sales.*, things.* FROM sales JOIN things ON (sales.id =
things.id);

Total
MapReduce CPU Time Spent: 2 seconds 50 msec

OK

Joe     2       2       Tie

Hank    4       4       Coat

Eve     3       3       Hat

Hank    2       2       Tie

Time
taken: 21.643 seconds, Fetched: 4 row(s)

7.14.1.5.      左外连接查询

hive>
SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id =
things.id);

Total
MapReduce CPU Time Spent: 1 seconds 450 msec

OK

Joe     2       2       Tie

Hank    4       4       Coat

Ali     0       NULL    NULL

Eve     3       3       Hat

Hank    2       2       Tie

Time
taken: 20.529 seconds, Fetched: 5 row(s)

7.14.1.6.      右外连接查询

hive>
SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id =
things.id);

Total
MapReduce CPU Time Spent: 1 seconds 650 msec

OK

Joe     2       2       Tie

Hank    2       2       Tie

Hank    4       4       Coat

Eve     3       3       Hat

NULL    NULL    1       Scarf

Time
taken: 19.049 seconds, Fetched: 5 row(s)

7.14.1.7.      全连接查询

hive>
SELECT
sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id =
things.id);

Total
MapReduce CPU Time Spent: 4 seconds 20 msec

OK

Ali     0       NULL    NULL

NULL    NULL    1       Scarf

Hank    2       2       Tie

Joe     2       2       Tie

Eve     3       3       Hat

Hank    4       4       Coat

Time
taken: 20.584 seconds, Fetched: 6 row(s)

7.14.1.8.      半连接

hive>
SELECT *
FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);

Total
MapReduce CPU Time Spent: 2 seconds 80 msec

OK

2       Tie

4       Coat

3       Hat

Time
taken: 27.454 seconds, Fetched: 3 row(s)

7.14.1.9.      Map连接

hive>
SELECT sales.*, things.* FROM sales JOIN things ON (sales.id =
things.id);

Total
MapReduce CPU Time Spent: 2 seconds 50 msec

OK

Joe     2       2       Tie

Hank    4       4       Coat

Eve     3       3       Hat

Hank    2       2       Tie

Time
taken: 20.329 seconds, Fetched: 4 row(s)

7.15.    应用外部编写的MapReduce

7.15.1.1.      创建表

hive>
DROP
TABLE IF EXISTS records2;

hive>
CREATE
TABLE records2 (station STRING, year STRING, temperature INT, quality INT) ROW
FORMAT DELIMITED FIELDS TERMINATED BY '\t';

7.15.1.2.      加载数据

hive>
LOAD
DATA LOCAL INPATH '/root/hapood/data/input/ncdc/micro-tab/sample2.txt' OVERWRITE
INTO TABLE records2;

7.15.1.3.      数据变换的Python代码

is_good_quality.py

#!/usr/bin/env python

import
re

import
sys

for line
in sys.stdin:

(year,
temp, q) = line.strip().split()

if
(temp != "9999" and re.match("[01459]", q)):

print
"%s\t%s" % (year, temp)

7.15.1.4.      MapReduce的Python代码

max_temperature_reduce.py

#!/usr/bin/env python

import
sys

(last_key, max_val) = (None, 0)

for line
in sys.stdin:

(key,
val) = line.strip().split("\t")

if
last_key and last_key != key:

print
"%s\t%s" % (last_key, max_val)

(last_key,
max_val) = (key, int(val))

else:

(last_key,
max_val) = (key, max(max_val, int(val)))

if
last_key:

print

"%s\t%s" % (last_key, max_val)

7.15.1.5.      在Hive中应用Python代码

7.15.1.5.1.            加载代码

hive>
ADD FILE
/root/hapood/data/input/hive/python/is_good_quality.py;

Added
resources: [/root/hapood/data/input/hive/python/is_good_quality.py]

7.15.1.5.2.            执行查询

hive>
FROM
records2 SELECT TRANSFORM(year, temperature, quality) USING
'is_good_quality.py' AS year, temperature;

Total
MapReduce CPU Time Spent: 1 seconds 640 msec

OK

1950    0

1950    22

1950    -11

1949    111

1949    78

Time
taken: 12.134 seconds, Fetched: 5 row(s)

7.15.1.6.      MapReduce的Python代码

7.15.1.6.1.            加载代码

hive>
ADD FILE
/root/hapood/data/input/hive/python/max_temperature_reduce.py;

Added
resources:
[/root/hapood/data/input/hive/python/max_temperature_reduce.py]

7.15.1.6.2.            执行查询

hive>
FROM
(

FROM
records2 MAP year, temperature, quality USING 'is_good_quality.py' AS year,
temperature

)
map_output

REDUCE
year, temperature USING 'max_temperature_reduce.py' AS year,
temperature;

Total
MapReduce CPU Time Spent: 1 seconds 730 msec

OK

1950    22

1949    111

Time
taken: 12.574 seconds, Fetched: 2 row(s)

hive> FROM (

FROM
records2 SELECT TRANSFORM(year, temperature, quality) USING 'is_good_quality.py'
AS year, temperature

)
map_output

SELECT
TRANSFORM(year, temperature) USING 'max_temperature_reduce.py' AS year,
temperature;

Total
MapReduce CPU Time Spent: 1 seconds 180 msec

OK

1950    22

1949    111

Time
taken: 12.839 seconds, Fetched: 2 row(s)

Hive安装与应用过程的更多相关文章

  1. Hadoop之hive安装过程以及运行常见问题

    Hive简介 1.数据仓库工具 2.支持一种与Sql类似的语言HiveQL 3.可以看成是从Sql到MapReduce的映射器 4.提供shall.Jdbc/odbc.Thrift.Web等接口 Hi ...

  2. hive安装--设置mysql为远端metastore

    作业任务:安装Hive,有条件的同学可考虑用mysql作为元数据库安装(有一定难度,可以获得老师极度赞赏),安装完成后做简单SQL操作测试.将安装过程和最后测试成功的界面抓图提交 . 已有的当前虚拟机 ...

  3. 【大数据系列】Hive安装及web模式管理

    一.什么是Hive Hive是建立在Hadoop基础常的数据仓库基础架构,,它提供了一系列的工具,可以用了进行数据提取转化加载(ETL),这是一种可以存储.查询和分析存储在Hadoop中的按规模数据的 ...

  4. Hive学习之路 (二)Hive安装

    Hive的下载 下载地址http://mirrors.hust.edu.cn/apache/ 选择合适的Hive版本进行下载,进到stable-2文件夹可以看到稳定的2.x的版本是2.3.3 Hive ...

  5. Hive安装-windows(转载)

    1.安装hadoop 2.从maven中下载mysql-connector-java-5.1.26-bin.jar(或其他jar版本)放在hive目录下的lib文件夹 3.配置hive环境变量,HIV ...

  6. Apache Hive (二)Hive安装

    转自:https://www.cnblogs.com/qingyunzong/p/8708057.html Hive的下载 下载地址http://mirrors.hust.edu.cn/apache/ ...

  7. Hive总结(四)hive安装记录

    本篇为安装篇较简单: 前提: 1: 安装了hadoop-1.0.4(1.0.3也能够)正常执行 2:安装了hbase-0.94.3, 正常执行 接下来,安装Hive,基于已经安装好的hadoop.过程 ...

  8. 第1节 hive安装:2、3、4、5、(多看几遍)

    第1节 hive安装: 2.数据仓库的基本概念: 3.hive的基本介绍: 4.hive的基本架构以及与hadoop的关系以及RDBMS的对比等 5.hive的安装之(使用mysql作为元数据信息存储 ...

  9. Mac上Hive安装配置

    Mac上Hive安装配置 1.安装 下载hive,地址:http://mirror.bit.edu.cn/apache/hive/ 之前我配置了集群,tjt01.tjt02.tjt03,这里hive安 ...

随机推荐

  1. 汽车检测SIFT+BOW+SVM

    项目来源于 <opencv 3计算机视觉 python语言实现> 整个执行过程如下: 1)获取一个训练数据集. 2)创建BOW训练器并获得视觉词汇. 3)采用词汇训练SVM. 4)尝试对测 ...

  2. 【poj1850】 Code 数位dp+记忆化搜索

    题目大意:给你一个字符串,问你这个字符串的rank,如果这个字符串不合法,请直接输出0.(一个合法的字符串是对于∀i,有c[i]<c[i+1]) 字符串s的rank的计算方式:以字符串长度作为第 ...

  3. Java的简单计算运用

    上课的时候写的博客,哈哈哈哈没事情做了,明天就要放假了所以有点点按捺不住自己所以想到来写写程序,今天我发的是我们Java上课老师讲的代码,好像是Java的计算运用,但是这个代码有缺点,只能够输入的打出 ...

  4. 获取列表数据时,getList 设置默认参数:getList(page = 1),点击分页及前往时,传page参数,其他使用page的默认值:1

    获取列表数据时,getList 设置默认参数:getList(page = 1),点击分页及前往时,传page参数,其他使用page的默认值:1

  5. VSTO学习(五)——创建Word解决方案

    一.引言 在上一个专题中主要为大家介绍如何自定义我们的Excel 界面的,然而在这个专题中,我将为大家介绍如何用VSTO来创建Word项目,对于Word的VSTO开发和Excel的开发很类似,你同样也 ...

  6. Java之集合(四)Vector和Stack

    转载请注明源出处:http://www.cnblogs.com/lighten/p/7296023.html 1.前言 本章介绍Java集合List中的Vector和其子类Stack.Vector类是 ...

  7. 【优化】bigpipe技术

    一.什么是bigpipe Bigpipe是Facebook工程师提出了一种新的页面加载技术. BigPipe是一个重新设计的基础动态网页服务体系.大体思路是,分解网页成叫做Pagelets的小块,然后 ...

  8. 【数组】Spiral Matrix II

    题目: Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. ...

  9. Windows 8的语音识别

    不多说,直接干货! 第一步:启动windows 语音识别窗口 第二步:设置windows 语音识别窗口 第三步:使用windows 语音识别窗口来输入文字  成功!!! 欢迎大家,加入我的微信公众号: ...

  10. 机器学习--集成学习(Ensemble Learning)

    一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好) ...