LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)
题意
Sol
反演套路题? 不过最后一步还是挺妙的。
套路枚举\(d\),化简可以得到
\]
后面的显然是狄利克雷卷积的形式,但是这里\(n \leqslant 10^{11}\)显然不能直接线性筛了
设\(F(n) = n, f(n) = \phi(n)\)
根据欧拉函数的性质,有\(F(n) = \sum_{d \ | n} f(d)\)
反演一下
\]
\]
那么原式等于
\]
然后杜教筛+数论分块一波
注意线性筛的范围最好设大一点
#include<bits/stdc++.h>
#define ull unsigned long long
#define LL long long
using namespace std;
const int MAXN = 1e7 + 10;
LL N, M, Lim;
int vis[MAXN], prime[MAXN], tot;
ull mp[MAXN], phi[MAXN];
void get(int N) {
vis[1] = phi[1] = 1;
for(int i = 2; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, phi[i] = i - 1;
for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = 1;
if(!(i % prime[j])) {phi[i * prime[j]] = phi[i] * prime[j]; break;}
else phi[i * prime[j]] = phi[i] * phi[prime[j]];
}
}
for(int i = 2; i <= N; i++) phi[i] += phi[i - 1];
}
ull mul(ull x, ull y) {
return x * y;
}
ull fp(ull a, ull p) {
ull base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
ull S(LL x) {
if(x <= Lim) return phi[x];
else if(mp[M / x]) return mp[M / x];
ull rt;
rt = (x & 1) ? (x + 1) / 2 * (x) : (x / 2) * (x + 1);
//rt = (x + 1) * x / 2;
for(LL d = 2, nxt; d <= x; d = nxt + 1) {
nxt = x / (x / d);
rt -= (nxt - d + 1) * S(x / d);
}
return mp[M / x] = rt;
}
signed main() {
cin >> N >> M;
get(Lim = ((int)1e7));
//for(int i = 1; i <= M; i++) printf("%d ", phi[i]);
ull ans = 0;
for(LL i = 1, nxt; i <= M; i = nxt + 1) {
nxt = M / (M / i);
ans += fp(M / i, N) * (S(nxt) - S(i - 1));
// cout << i << '\n';
}
cout << ans;
return 0;
}
LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)的更多相关文章
- loj#6491. zrq 学反演
题意:求\(\sum_{i_1=1}^m\sum_{i_2=1}^m...\sum_{i_n=1}^mgcd(i_1,i_2,...i_n)\) 题解:\(\sum_{d=1}^md\sum_{i_1 ...
- 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...
- 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...
- [CSP-S模拟测试]:123567(莫比乌斯函数+杜教筛+数论分块)
题目传送门(内部题92) 输入格式 一个整数$n$. 输出格式 一个答案$ans$. 样例 样例输入: 样例输出: 数据范围与提示 对于$20\%$的数据,$n\leqslant 10^6$. 对于$ ...
- bzoj 4916: 神犇和蒟蒻【欧拉函数+莫比乌斯函数+杜教筛】
居然扒到了学长出的题 和3944差不多(?),虽然一眼看上去很可怕但是仔细观察发现,对于mu来讲,答案永远是1(对于带平方的,mu值为0,1除外),然后根据欧拉筛的原理,\( \sum_{i=1}^{ ...
- bzoj 3512: DZY Loves Math IV【欧拉函数+莫比乌斯函数+杜教筛】
参考:http://blog.csdn.net/wzf_2000/article/details/54630931 有这样一个显然的结论:当\( |\mu(n)|==1 \)时,\( \phi(nk) ...
- 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...
- 51nod 1244 莫比乌斯函数之和 【莫比乌斯函数+杜教筛】
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\mu(i) \ ...
- 我也不知道什么是"莫比乌斯反演"和"杜教筛"
我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...
随机推荐
- webpack快速入门——CSS文件打包
1.在src下新建css文件,在css文件下新建index.css文件,输入以下代码 body{ background:pink; color:yellowgreen; } 2.css建立好后,需要引 ...
- method swizzing
原理 类的方法类别中,选择子的名称通过映射表找到应该调用的方法.如下所示:  OC 的运行时提供了几个方法可以操作这张表.可以向其中新增选择子,改变选择子的实现,或者交换选择子映射到的指针.  在 ...
- 【GDKOI2016】 魔卡少女 线段树
题目大意:给你一个长度为n的序列${a_1....a_n}$,有$m$次操作 每次操作有两种情况:修改$a_i$的值,询问$[l,r]$中所有子区间的异或和. 数据范围:$n,m≤10^5$,$a_i ...
- 【bzoj4259】 残缺的字符串 FFT
又是一道FFT套路题 思路可以参考bzoj4503,题解 我们对串S和串T中出现的*处全部赋值为0. 反正最终的差异度式子大概就是 $C[i]=\sum_{j=0}^{|T|-1}S[i+j]T[j] ...
- 归并排序的理解和实现(Java)
归并排序介绍 归并排序(Merge Sort)就是利用归并的思想实现的排序方法.它的原理是假设初始序列含有fn个记录,则可以看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到[n2\fr ...
- celery问题记录
1. 问题:WARNING/MainProcess] /home/jihonghe/.virtualenvs/py3_dj217_env/lib/python3.6/site-packages/bil ...
- 剑指offer三十九之平衡二叉树
一.题目 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 二.思路 详解代码. 三.代码 public class Solution { //判断根节点左右子树的深度,高度差超过1,则不平衡 ...
- kafka 消费者offset记录位置和方式
我们大家都知道,kafka消费者在会保存其消费的进度,也就是offset,存储的位置根据选用的kafka api不同而不同. 首先来说说消费者如果是根据javaapi来消费,也就是[kafka.jav ...
- spring 接收前台ajax传来的参数的几个方法
知识补充 JSON.stringify(), 将value(Object,Array,String,Number...)序列化为JSON字符串JSON.parse(), 将JSON数据解析为js原生值 ...
- CentOS6.5下Ambari安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)
第一步: Ambari安装之Ambari安装前准备(CentOS6.5)(一) 第二步: Ambari安装之部署本地库(镜像服务器)(二) 第三步: Ambari安装之安装并配置Ambari-serv ...