使用普通集合来判断一个元素是否已存在于集合中,需要占用比较大的空间。而使用Bloom Filter 可有效节省空间。 Bloom Filter 以较少的内存占用及较小的误判率达到判断元素是否存已经加入集合中的目的。Bloom Filter是一种空间效率很高的随机数据结构,可以被看作是对位图的扩展.

基本思想

首先创建一个长度位m的位数组,初始化为全0.对集合S中的每一个元素,通过k个散列函数计算出k个bit位,将位数组中对应的位置1.那么,当判断一个元素是否存在于集合S中时,同样计算k个bit位,如果位数组中这k个位置任意一位是0,则该元素不在集合S中,如果全是1,则以较大概率认为存在于该集合中.因此存在一定的误判率(false positive rate).

误判率

插入一个元素后,某一特定比特位仍然为 0 的概率为\((1-{1\over m})^k\).
由于
\[
\lim_{x\rightarrow\infty}(1-{1\over x})^{-x}=e
\]
所以插入 n个元素后特定位仍为 0 的概率为\(p'=(1-{1\over m})^{kn}\approx e^{-{kn\over m}}\).
p'同时是位数组中0的比例的数学期望.特定位被置为 1 的概率为:\(t=1-p'\).

误判存在于k个独立hash函数的位都是1的情况,因此误判率为
\[
f=t^k\approx (1-e^{-{kn\over m}})^k
\]

从误判率公式可以看出,当位数组(桶)的位数越多时,误判率越小.而误判率与hash函数个数并非单调递减的关系.

最优散列函数个数

我们的目标是最小化误判率,因此最优的散列函数个数应使得误判率较小.

另\(p=e^{-{kn\over m}}\),则\(f=(1-p)^k=e^{k\ln(1-p)}\).最小化f等价于最小化 \(g=k\ln(1-p)\) 的值.因为\(\ln p=-{kn\over m}\),所以\(k=-{m\over n}\ln p,g=-{m\over n}\ln p\ln(1-p)\).根据对称性,可以看出,当\(p={1\over 2}\)时,\(k={m\over n}\ln2\approx 0.693{m\over n}\)时,取得最小误判率
\[
f=({1\over 2})^k=(2^{-\ln 2})^{m\over n}\approx 0.6185^{m\over n}
\]
p是数组中某一位仍是0的概率,所以p=0.5意味着数组中一半还空着(0位),才能保持低误判率. 从\(k={m\over n}\ln2\) 可以看出最优的hash函数个数应当与数组位数成正比,与集合的元素个数成反比,这也符合我们的直觉.

应用

数据判重或者求交集.

参考

Jacob Honoroff. An Examination of Bloom Filters and their Applications. cs.unc.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf. March 16, 2006.

布隆过滤器 Bloom Filter的更多相关文章

  1. [转载]布隆过滤器(Bloom Filter)

    [转载]布隆过滤器(Bloom Filter) 这部分学习资料来源:https://www.youtube.com/watch?v=v7AzUcZ4XA4 Filter判断不在,那就是肯定不在:Fil ...

  2. 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想

    转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton ...

  3. 布隆过滤器(Bloom Filter)的原理和实现

    什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, ...

  4. [转载] 布隆过滤器(Bloom Filter)详解

    转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton ...

  5. 布隆过滤器(Bloom Filter)详解

    直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...

  6. 浅谈布隆过滤器Bloom Filter

    先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...

  7. 【面试突击】-缓存击穿(布隆过滤器 Bloom Filter)

    原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途 ...

  8. 布隆过滤器 Bloom Filter 2

    date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...

  9. 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)

    布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...

  10. 探索C#之布隆过滤器(Bloom filter)

    阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...

随机推荐

  1. Xiuno BBS 4.0 修改时间显示

    修罗开源轻论坛程序 - Xiuno BBS 4.0Xiuno BBS 4.0 是一款轻论坛产品,前端基于 BootStrap 4.0.JQuery 3,后端基于 PHP/7 MySQL XCache/ ...

  2. Rotation and Transform

    A transformation matrix describes the rotation of a coordinate system while an object remains fixed. ...

  3. 解决SecureCRT小键盘乱码

    SecureCRT软件菜单,Options -> Session Options ->Terminal -> Emulation,右侧面板中"Terminal"选 ...

  4. 【欢迎来怼】 Beta发布事后诸葛亮会议

    队名:欢迎来怼 项目名称:博客园Android端APP 小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 ————————————————————————————————————— ...

  5. oracle和mysql对时间与字符串的转换

    1,oracle to_date(#{item.value},'YYYY-MM-DD hh24-mi-ss') to_char(CRERATE_TIME,'YYYY-MM-DD hh24-mi-ss' ...

  6. Scrum Meeting 11.04

    成员 今日任务 明日计划 用时 徐越 学习Fragment相关知识,代码移植 代码移植 4h 赵庶宏 selvet移植,服务器配置,编写数据库 服务器配置,代码移植 4h 薄霖 学习安卓界面设计数据库 ...

  7. C++自学随笔

    主要学习内容: 了解了IDE环境的含义 C++与C的区别: 新的数据类型:bool型 新的初始化方法:直接初始化int x(1024) 经过查找,了解了直接初始化与复制初始化的区别:"当用于 ...

  8. BloomFilter——大规模数据处理利器(爬虫判重)

    http://www.cnblogs.com/heaad/archive/2011/01/02/1924195.html Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快 ...

  9. The North American Invitational Programming Contest 2017 题目

    NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K   A mysterious circular arrangement of black st ...

  10. 使用百度地图api可视化聚类结果

    1.写在前面 上接YFCC 100M数据集分析笔记,在对聚类出的照片GEO集聚类后,为了方便检测聚类结果,我们显示直接采用了 python 的 matplotlib 库以经纬度为坐标画出聚类结果,但发 ...