布隆过滤器 Bloom Filter
使用普通集合来判断一个元素是否已存在于集合中,需要占用比较大的空间。而使用Bloom Filter 可有效节省空间。 Bloom Filter 以较少的内存占用及较小的误判率达到判断元素是否存已经加入集合中的目的。Bloom Filter是一种空间效率很高的随机数据结构,可以被看作是对位图的扩展.
基本思想
首先创建一个长度位m的位数组,初始化为全0.对集合S中的每一个元素,通过k个散列函数计算出k个bit位,将位数组中对应的位置1.那么,当判断一个元素是否存在于集合S中时,同样计算k个bit位,如果位数组中这k个位置任意一位是0,则该元素不在集合S中,如果全是1,则以较大概率认为存在于该集合中.因此存在一定的误判率(false positive rate).
误判率
插入一个元素后,某一特定比特位仍然为 0 的概率为\((1-{1\over m})^k\).
由于
\[
\lim_{x\rightarrow\infty}(1-{1\over x})^{-x}=e
\]
所以插入 n个元素后特定位仍为 0 的概率为\(p'=(1-{1\over m})^{kn}\approx e^{-{kn\over m}}\).
p'同时是位数组中0的比例的数学期望.特定位被置为 1 的概率为:\(t=1-p'\).
误判存在于k个独立hash函数的位都是1的情况,因此误判率为
\[
f=t^k\approx (1-e^{-{kn\over m}})^k
\]
从误判率公式可以看出,当位数组(桶)的位数越多时,误判率越小.而误判率与hash函数个数并非单调递减的关系.
最优散列函数个数
我们的目标是最小化误判率,因此最优的散列函数个数应使得误判率较小.
另\(p=e^{-{kn\over m}}\),则\(f=(1-p)^k=e^{k\ln(1-p)}\).最小化f等价于最小化 \(g=k\ln(1-p)\) 的值.因为\(\ln p=-{kn\over m}\),所以\(k=-{m\over n}\ln p,g=-{m\over n}\ln p\ln(1-p)\).根据对称性,可以看出,当\(p={1\over 2}\)时,\(k={m\over n}\ln2\approx 0.693{m\over n}\)时,取得最小误判率
\[
f=({1\over 2})^k=(2^{-\ln 2})^{m\over n}\approx 0.6185^{m\over n}
\]
p是数组中某一位仍是0的概率,所以p=0.5意味着数组中一半还空着(0位),才能保持低误判率. 从\(k={m\over n}\ln2\) 可以看出最优的hash函数个数应当与数组位数成正比,与集合的元素个数成反比,这也符合我们的直觉.
应用
数据判重或者求交集.
参考
Jacob Honoroff. An Examination of Bloom Filters and their Applications. cs.unc.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf. March 16, 2006.
布隆过滤器 Bloom Filter的更多相关文章
- [转载]布隆过滤器(Bloom Filter)
[转载]布隆过滤器(Bloom Filter) 这部分学习资料来源:https://www.youtube.com/watch?v=v7AzUcZ4XA4 Filter判断不在,那就是肯定不在:Fil ...
- 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)的原理和实现
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, ...
- [转载] 布隆过滤器(Bloom Filter)详解
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)详解
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...
- 浅谈布隆过滤器Bloom Filter
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...
- 【面试突击】-缓存击穿(布隆过滤器 Bloom Filter)
原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途 ...
- 布隆过滤器 Bloom Filter 2
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...
- 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)
布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...
- 探索C#之布隆过滤器(Bloom filter)
阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...
随机推荐
- XSS(Cross Site Script)
类型一:反射型XSS 简单地把用户输入的数据“反射”给浏览器.也就是说,黑客需要诱使用户“点击”一个恶意链接,才能攻击成功. 类型二:存储型XSS 把用户输入的数据“存储”在服务器端.这种XSS具有很 ...
- YQCB冲刺第二周第二天
今天的任务依然为实现查看消费明细的功能. 遇到的问题为从数据库中分类读取,实现图标的显示. 站立会议为: 任务面板为:
- java核心技术卷1知识点
1.comparable和comparator的区别. Comparable可以认为是一个内比较器,实现了Comparable接口的类有一个特点,就是这些类是可以和自己比较的. public inte ...
- AVMoviePlayer 视频播放器
AVMoviePlayer 是使用系统框架 MPMoviePlayerController 封装的视频播放器 一.功能: 1.根据手机旋转自由切换横竖屏:2.手势轻点显示/隐藏topView/bott ...
- ubuntu中启动VIM,以及学习VIM
启动VIM:首先打开终端,然后输入vi回车,然后输入i或者a,进入. 学习VIM:首先打开终端,然后输入vimtutor回车,然后进入教程学习.
- Alpha阶段敏捷冲刺②
1.提供当天站立式会议照片一张 每个人的工作 (有work item 的ID),并将其记录在码云项目管理中: 昨天已完成的工作. 购买云服务器 注册账号 界面布局初步规划 今天计划完成的工作. 界面雏 ...
- autoit获取ie浏览器简单操作网页(GUI小工具)
需要稍稍熟悉一下autoti提供的语言, 我简单做了一个带GUI的小工具,实现根据IE标题点击页面内的LinkText 注意:使用时IE窗口是显示状态才可以获取到(可以在脚本中加入搜索IE句柄,将ie ...
- 面试问题总结二(技术能力-PHP)----Ⅲ
42.什么是单点登录? 答:单点登录 SSO(Single Sign On)说得简单点就是在一个多系统共存的环境下,用户在一处登录后,就不用在其他系统中登录,也就是用户的一次登录能得到其他所有系统的信 ...
- MicrosoftFixit50688 [Windows7事件ID10,WMI错误的解决方法
Windows7事件记录中有如下错误提示: "Event filter with query "SELECT * FROM __InstanceModificationEve ...
- [转帖] Linux buffer 和 cache相关内容
Linux中Buffer/Cache清理 Lentil2018年9月6日 Linux中的buff/cache可以被手动释放,释放缓存的代码如下: https://lentil1016.cn/linux ...