HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4126
Genghis Khan the Conqueror
Time Limit: 10000/5000 MS (Java/Others)Memory Limit: 327680/327680 K (Java/Others)
#### 问题描述
> Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元太祖), was the founder of the Mongol Empire and the greatest conqueror in Chinese history. After uniting many of the nomadic tribes on the Mongolian steppe, Genghis Khan founded a strong cavalry equipped by irony discipline, sabers and powder, and he became to the most fearsome conqueror in the history. He stretched the empire that resulted in the conquest of most of Eurasia. The following figure (origin: Wikipedia) shows the territory of Mongol Empire at that time.
> Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each city can send and receive messages safely and promptly through those roads.
>
> There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and the total cost was minimal.
>
> Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
#### 输入
> There are no more than 20 test cases in the input.
> For each test case, the first line contains two integers N and M (1
> The next line contains an integer Q (1 For each test case, output a real number demonstrating the expected minimal total cost. The result should be rounded to 4 digits after decimal point.
####样例输入
> 3 3
> 0 1 3
> 0 2 2
> 1 2 5
> 3
> 0 2 3
> 1 2 6
> 0 1 6
> 0 0
样例输出
6.0000
题意
给你一个无相图,要你求最小生成树,现在有q个查询,每个查询会改变一条边的权值,然后再改回去,要你求出每种情况下的最小生成树,最后求一下平均。
题解
1、如果改变的边不在我们一开始求的mst上,那么答案就是mst。
2、否则,把指定的树边删了,我们得到两个顶点集,那么代替原先那条边的一定是这两个集合的最短距离。所以我们只要处理出best[u][v](既u所在的集合和v所在的集合的最短距离)就能处理第2种情况了。做法是两次树dp,具体看代码。dp[u][v]:顶点u到集合v的最短距离。
best[u][v]:集合u到集合v的最短距离。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=3030;
struct Edge {
int u,v,w;
Edge(int u,int v,int w):u(u),v(v),w(w) {}
Edge() {}
bool operator < (const Edge& tmp) const {
return w<tmp.w;
}
} egs[maxn*maxn];
int n,m;
int G[maxn][maxn],dp[maxn][maxn],best[maxn][maxn];
bool used[maxn][maxn];
VPII tre[maxn];
int fa[maxn];
int find(int x) {
return fa[x]=fa[x]==x?x:find(fa[x]);
}
void dfs(int u,int fa,int rt) {
if(u!=rt&&!used[u][rt]) dp[rt][u]=min(dp[rt][u],G[rt][u]);
rep(i,0,tre[u].sz()) {
int v=tre[u][i].X;
if(v==fa) continue;
dfs(v,u,rt);
dp[rt][u]=min(dp[rt][u],dp[rt][v]);
}
}
int dfs2(int u,int fa,int rt) {
if(best[u][rt]<100000000) return best[u][rt];
best[u][rt]=min(best[u][rt],dp[u][rt]);
for(int i=0; i<tre[u].sz(); i++) {
int v=tre[u][i].X;
if(v==fa) continue;
dfs2(v,u,rt);
best[u][rt]=min(best[u][rt],best[v][rt]);
}
return best[u][rt];
}
///最小生成树
double kruskal() {
sort(egs,egs+m);
double mst=0;
for(int i=0; i<m; i++) {
int u=egs[i].u,v=egs[i].v,w=egs[i].w;
int pu=find(u);
int pv=find(v);
if(pu!=pv) {
fa[pv]=pu;
tre[u].pb(mkp(v,w));
tre[v].pb(mkp(u,w));
used[u][v]=used[v][u]=1;
mst+=w;
}
}
return mst;
}
void init() {
clr(G,0x3f);
clr(dp,0x3f);
clr(best,0x3f);
clr(used,0);
for(int i=0; i<n; i++) fa[i]=i,tre[i].clear();
}
int main() {
while(scf("%d%d",&n,&m)==2&&n) {
init();
for(int i=0; i<m; i++) {
int u,v,w;
scf("%d%d%d",&u,&v,&w);
G[u][v]=G[v][u]=w;
egs[i]=Edge(u,v,w);
}
double mst=kruskal();
///树形dp,dp[u][v]表示u到以v为根的子树的最短距离,既点到集合的距离(以u为根开始遍历,且只用非树边更新)
for(int i=0; i<n; i++) dfs(i,-1,i);
///记忆化搜索,best[u][v]表示以u为根的子树和以v为根的子树之间的最短距离,既集合到集合的距离
///对于子树v,我们已经求出了所有的点u到它的最短距离,现在只要遍历所有的u,求出最小值即可。
for(int i=0; i<n; i++) {
for(int j=0; j<tre[i].sz(); j++) {
int v=tre[i][j].X;
best[i][v]=best[v][i]=dfs2(i,v,v);
}
}
int q;
scf("%d",&q);
double ans=0;
rep(i,0,q) {
int u,v,w;
scf("%d%d%d",&u,&v,&w);
if(used[u][v]) {
///在树边上
ans+=mst-G[u][v]+min(w,best[u][v]);
} else {
///不在树边上
ans+=mst;
}
}
prf("%.4lf\n",ans/q);
}
return 0;
}
//end-----------------------------------------------------------------------
HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp的更多相关文章
- HDU 4126 Genghis Khan the Conqueror MST+树形dp
题意: 给定n个点m条边的无向图. 以下m行给出边和边权 以下Q个询问. Q行每行给出一条边(一定是m条边中的一条) 表示改动边权. (数据保证改动后的边权比原先的边权大) 问:改动后的最小生成树的权 ...
- hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...
- HDU 4126 Genghis Khan the Conqueror (树形DP+MST)
题意:给一图,n个点,m条边,每条边有个花费,给出q条可疑的边,每条边有新的花费,每条可疑的边出现的概率相同,求不能经过原来可疑边 (可以经过可疑边新的花费构建的边),注意每次只出现一条可疑的边,n个 ...
- UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)
题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...
- hdu4126Genghis Khan the ConquerorGenghis Khan the Conqueror(MST+树形DP)
题目请戳这里 题目大意:给n个点,m条边,每条边权值c,现在要使这n个点连通.现在已知某条边要发生突变,再给q个三元组,每个三元组(a,b,c),(a,b)表示图中可能发生突变的边,该边一定是图中的边 ...
- HDU4126Genghis Khan the Conqueror(最小生成树+并查集)
Genghis Khan the Conqueror Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K ...
- HDU-4126 Genghis Khan the Conqueror 树形DP+MST (好题)
题意:给出一个n个点m条边的无向边,q次询问每次询问把一条边权值增大后问新的MST是多少,输出Sum(MST)/q. 解法:一开始想的是破圈法,后来想了想应该不行,破圈法应该只能用于加边的情况而不是修 ...
- 刷题总结——Genghis Khan the Conqueror (hdu4126)
题目: Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元 ...
- Install Air Conditioning HDU - 4756(最小生成树+树形dp)
Install Air Conditioning HDU - 4756 题意是要让n-1间宿舍和发电站相连 也就是连通嘛 最小生成树板子一套 但是还有个限制条件 就是其中有两个宿舍是不能连着的 要求所 ...
随机推荐
- C# 用QQ企业邮箱发邮件
问题System.Net.Mail下的SmtpClient来发送邮件,而System.Net.Mail only仅支持Explicit SSL 不要465端口,用25,不用EnableSsl = tr ...
- java中package import区别
他们两个是互逆过程package freedom.bean;将你这个类放在了/freedom/bean/这个文件夹下面要使用的话import freedom.bean.*;导入这个类
- 8-[表操作]--foreign key、表与表的关系
1. foreign key (1)快速理解foreign key 员工信息表有三个字段:工号 姓名 部门 公司有3个部门,但是有1个亿的员工,那意味着部门这个字段需要重复存储,部门名字越长,越浪费 ...
- 04-cookies 会话跟踪技术
1.会话跟踪技术 1.Http协议的无状态保存 会话理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应 2 .会话路径技术使用Cookie或session完成 我们知道HTTP协 ...
- c# 抓取和解析网页,并将table数据保存到datatable中(其他格式也可以,自己去修改)
使用HtmlAgilityPack 基础请参考这篇博客:https://www.cnblogs.com/fishyues/p/10232822.html 下面是根据抓取的页面string 来解析并保存 ...
- Redis 为什么使用单进程单线程方式也这么快
Redis 采用的是基于内存的采用的是单进程单线程模型的 KV 数据库,由 C 语言编写.官方提供的数据是可以达到100000+的 qps.这个数据不比采用单进程多线程的同样基于内存的 KV 数据库 ...
- Linux之linux入门
学习linux之前先了解一下操作系统: 操作系统的定义: 操作系统(英语:operating system,缩写作 OS)是管理计算机硬件与软件资源的计算机程序,同时也是计算机系统的内 ...
- Altium软件中Unknowpin的详细解决办法
1.Altium软件中Unknowpin第一种原因:PCB封装缺失遗漏,直接加入对应的封装即可.点击箭头指示处的Add,接着点击OK之后,再点击图中所示处Browse...选择封装库的封装即可. 2. ...
- 第四篇 HTTP请求返回状态码收集及解释
[转载]https://blog.csdn.net/wangsen2235068/article/details/8081274 当用户试图通过 HTTP 访问一台正在运行 Internet 信息服务 ...
- 【Unity Shader】(九) ------ 高级纹理之渲染纹理及镜子与玻璃效果的实现
笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题. [Unity Shader](三) ----- ...