nand flash 的oob 及坏块管理
0.NAND的操作管理方式
NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 (Block) = xxxx (Pages),1(Page) =528 (Bytes) = 数据块大小(512Bytes) + OOB 块大小(16Bytes,除OOB第六字节外,通常至少把OOB的前3个字节存放Nand Flash硬件ECC码)。
关于OOB区,是每个Page都有的。Page大小是512字节的NAND每页分配16字节的OOB;如果NAND物理上是2K的Page,则每个Page分配64字节的OOB。如下图:
以HYNIX为例,图中黑体的是实际探测到的NAND,是个2G bit(256M)的NAND。PgSize是2K字节,PgsPBlk表示每个BLOCK包含64页,那么每个BLOCK占用的字节数是 64X2K=128K字节;该NAND包好2048个BLOCK,那么可以算出NAND占用的字节数是2048X128K=256M,与实际相符。需要注意的是SprSize就是OOB大小,也恰好是2K页所用的64字节。
1.为什么会出现坏块 由于NAND Flash的工艺不能保证NAND的Memory Array在其生命周期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。坏块的特性是:当编程/擦除这个块时,会造成Page Program和Block Erase操作时的错误,相应地反映到Status Register的相应位。
2.坏块的分类 总体上,坏块可以分为两大类:(1)固有坏块:这是生产过程中产生的坏块,一般芯片原厂都会在出厂时都会将每个坏块第一个page的spare area的第6个byte标记为不等于0xff的 值。(2)使用坏块:这是在NAND Flash使用过程中,如果Block Erase或者Page Program错误,就可以简单地将这个块作为坏块来处理,这个时候需要把坏块标记起来。为了和固有坏块信息保持一致,将新发现的坏块的第一个page的 spare area的第6个Byte标记为非0xff的值。
3.坏块管理 根据上面的这些叙述,可以了解NAND Flash出厂时在spare area中已经反映出了坏块信息,因此, 如果在擦除一个块之前,一定要先check一下第一页的spare area的第6个byte是否是0xff,如果是就证明这是一个好块,可以擦除;如果是非0xff,那么就不能擦除,以免将坏块标记擦掉。 当然,这样处理可能会犯一个错误―――“错杀伪坏块”,因为在芯片操作过程中可能由于 电压不稳定等偶然因素会造成NAND操作的错误。但是,为了数据的可靠性及软件设计的简单化,还是需要遵照这个标准。
可以用BBT:bad block table,即坏块表来进行管理。各家对nand的坏块管理方法都有差异。比如专门用nand做存储的,会把bbt放到block0,因为第0块一定是好的块。但是如果nand本身被用来boot,那么第0块就要存放程序,不能放bbt了。 有的把bbt放到最后一块,当然,这一块坚决不能为坏块。 bbt的大小跟nand大小有关,nand越大,需要的bbt也就越大。
需要注意的是:OOB是每个页都有的数据,里面存的有ECC(当然不仅仅);而BBT是一个FLASH才有一个;针对每个BLOCK的坏块识别则是该块第一页spare area的第六个字节。 4.坏块纠正
ECC: NAND Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出错。一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的错误不保证能检测。 ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1。(512生成两组ECC,共6字节) 当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB (out- of-band)数据区中。其位置就是eccpos[]。校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验和按位异或,若结果为0,则表示不存在错(或是出现了ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠正;若3个字节异或结果中只存在1个比特位为1,表示OOB区出错;其他情况均表示出现了无法纠正的错误。 5.补充 (1)需要对前面由于Page Program错误发现的坏块进行一下特别说明。如果在对一个块的某个page进行编程的时候发生了错误就要把这个块标记为坏块,首先就要把块里其他好的面的内容备份到另外一个空的好块里面,然后,把这个块标记为坏块。当然,这可能会犯“错杀”之误,一个补救的办法,就是在进行完块备份之后,再将这个坏块擦除一遍,如果Block Erase发生错误,那就证明这个块是个真正的坏块,那就毫不犹豫地将它打个“戳”吧! (2)可能有人会问,为什么要使用每个块第一页的spare area的第六个byte作为坏块标记。这是NAND Flash生产商的默认约定,你可以看到Samsung,Toshiba,STMicroelectronics都是使用这个Byte作为坏块标记的。
(3)为什么好块用0xff来标记?因为Nand Flash的擦除即是将相应块的位全部变为1,写操作时只能把芯片每一位(bit)只能从1变为0,而不能从0变为1。0XFF这个值就是标识擦除成功,是好块。
====================================================
- bbt坏块管理
- 日月 发表于 - 2010-3-2 9:59:00
- 2
- 推荐
- 前面看到在nand_scan()函数的最后将会跳至scan_bbt()函数,这个函数在nand_scan里面有定义:
- 2415 if (!this->scan_bbt)
- 2416 this->scan_bbt = nand_default_bbt;
- nand_default_bbt()位于Nand_bbt.c文件中。
- 1047 /**
- * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
- * @mtd: MTD device structure
- *
- * This selects the default bad block table
- * support for the device and calls the nand_scan_bbt
- **/
- int nand_default_bbt (struct mtd_info *mtd)
- {
- struct nand_chip *this = mtd->priv;
- 这个函数的作用是建立默认的坏块表。
- 1059 /* Default for AG-AND. We must use a flash based
- * bad block table as the devices have factory marked
- * _good_ blocks. Erasing those blocks leads to loss
- * of the good / bad information, so we _must_ store
- * this information in a good / bad table during
- * startup
- */
- if (this->options & NAND_IS_AND) {
- /* Use the default pattern deors */
- if (!this->bbt_td) {
- this->bbt_td = &bbt_main_descr;
- this->bbt_md = &bbt_mirror_descr;
- }
- this->options |= NAND_USE_FLASH_BBT;
- return nand_scan_bbt (mtd, &agand_flashbased);
- }
- 如果Flash的类型是AG-AND(这种Flash类型比较特殊,既不是MLC又不是SLC,因此不去深究了,而且好像瑞萨要把它淘汰掉),需要使用默认的模式描述符,最后再进入nand_scan_bbt()函数。
- 1078 /* Is a flash based bad block table requested ? */
- if (this->options & NAND_USE_FLASH_BBT) {
- /* Use the default pattern deors */
- if (!this->bbt_td) {
- this->bbt_td = &bbt_main_descr;
- this->bbt_md = &bbt_mirror_descr;
- }
- if (!this->badblock_pattern) {
- this->badblock_pattern = (mtd->oobblock > 512) ?
- &largepage_flashbased : &smallpage_flashbased;
- }
- } else {
- this->bbt_td = NULL;
- this->bbt_md = NULL;
- if (!this->badblock_pattern) {
- this->badblock_pattern = (mtd->oobblock > 512) ?
- &largepage_memorybased : &smallpage_memorybased;
- }
- }
- return nand_scan_bbt (mtd, this->badblock_pattern);
- 如果Flash芯片需要使用坏块表,对于1208芯片来说是使用smallpage_memorybased。
- 985 static struct nand_bbt_descr smallpage_memorybased = {
- .options = NAND_BBT_SCAN2NDPAGE,
- .offs = 5,
- .len = 1,
- .pattern = scan_ff_pattern
- };
- 暂时没看到如何使用这些赋值,先放着。后面检测坏块时用得着。
- 1099 return nand_scan_bbt (mtd, this->badblock_pattern);
- 最后将badblock_pattern作为参数,调用nand_can_bbt函数。
- 844 /**
- * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
- * @mtd: MTD device structure
- * @bd: deor for the good/bad block search pattern
- *
- * The checks, if a bad block table(s) is/are already
- * available. If not it scans the device for manufacturer
- * marked good / bad blocks and writes the bad block table(s) to
- * the selected place.
- *
- * The bad block table memory is allocated here. It must be freed
- * by calling the nand_free_bbt .
- *
- */
- int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
- {
- 检测、寻找、读取甚至建立坏块表。函数检测是否已经存在一张坏块表,否则建立一张。坏块表的内存分配也在这个函数中。
- 860 struct nand_chip *this = mtd->priv;
- int len, res = 0;
- uint8_t *buf;
- struct nand_bbt_descr *td = this->bbt_td;
- struct nand_bbt_descr *md = this->bbt_md;
- len = mtd->size >> (this->bbt_erase_shift + 2);
- /* Allocate memory (2bit per block) */
- this->bbt = kmalloc (len, GFP_KERNEL);
- if (!this->bbt) {
- printk (KERN_ERR "nand_scan_bbt: Out of memory/n");
- return -ENOMEM;
- }
- /* Clear the memory bad block table */
- memset (this->bbt, 0x00, len);
- 一些赋值、变量声明、内存分配,每个block分配2bit的空间。1208有4096个block,应该分配4096*2bit的空间。
- 877 /* If no primary table decriptor is given, scan the device
- * to build a memory based bad block table
- */
- if (!td) {
- if ((res = nand_memory_bbt(mtd, bd))) {
- printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT/n");
- kfree (this->bbt);
- this->bbt = NULL;
- }
- return res;
- }
- 如果没有提供ptd,就扫描设备并建立一张。这里调用了nand_memory_bbt()这个内联函数。
- 653 /**
- * nand_memory_bbt - [GENERIC] create a memory based bad block table
- * @mtd: MTD device structure
- * @bd: deor for the good/bad block search pattern
- *
- * The creates a memory based bbt by scanning the device
- * for manufacturer / software marked good / bad blocks
- */
- static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
- {
- struct nand_chip *this = mtd->priv;
- bd->options &= ~NAND_BBT_SCANEMPTY;
- return create_bbt (mtd, this->data_buf, bd, -1);
- }
- 函数的作用是建立一张基于memory的坏块表。
- 将操作符的NAND_BBT_SCANEMPTY清除,并继续调用creat_bbt()函数。
- 271 /**
- * create_bbt - [GENERIC] Create a bad block table by scanning the device
- * @mtd: MTD device structure
- * @buf: temporary buffer
- * @bd: deor for the good/bad block search pattern
- * @chip: create the table for a specific chip, -1 read all chips.
- * Applies only if NAND_BBT_PERCHIP option is set
- *
- * Create a bad block table by scanning the device
- * for the given good/bad block identify pattern
- */
- static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
- {
- 真正的建立坏块表函数。chip参数是-1表示读取所有的芯片。
- 284 struct nand_chip *this = mtd->priv;
- int i, j, numblocks, len, scanlen;
- int startblock;
- loff_t from;
- size_t readlen, ooblen;
- printk (KERN_INFO "Scanning device for bad blocks/n");
- 一些变量声明,开机时那句话就是在这儿打印出来的。
- 292 if (bd->options & NAND_BBT_SCANALLPAGES)
- len = 1 << (this->bbt_erase_shift - this->page_shift);
- else {
- if (bd->options & NAND_BBT_SCAN2NDPAGE)
- len = 2;
- else
- len = 1;
- }
- 在前面我们定义了smallpage_memorybased这个结构体,现在里面NAND_BBT_SCANALLPAGES的终于用上了,对于1208芯片来说,len=2。
- 304 if (!(bd->options & NAND_BBT_SCANEMPTY)) {
- /* We need only read few bytes from the OOB area */
- scanlen = ooblen = 0;
- readlen = bd->len;
- } else {
- /* Full page content should be read */
- scanlen = mtd->oobblock + mtd->oobsize;
- readlen = len * mtd->oobblock;
- ooblen = len * mtd->oobsize;
- }
- 前面已经将NAND_BBT_SCANEMPTY清除了,这里肯定执行else的内容。需要将一页内容都读取出来。
- 316 if (chip == -1) {
- /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
- * makes shifting and masking less painful */
- numblocks = mtd->size >> (this->bbt_erase_shift - 1);
- startblock = 0;
- from = 0;
- } else {
- if (chip >= this->numchips) {
- printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)/n",
- chip + 1, this->numchips);
- return -EINVAL;
- }
- numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
- startblock = chip * numblocks;
- numblocks += startblock;
- from = startblock << (this->bbt_erase_shift - 1);
- }
- 前面提到chip为-1,实际上我们只有一颗芯片,numblocks这儿是4096*2。
- 335 for (i = startblock; i < numblocks;) {
- int ret;
- if (bd->options & NAND_BBT_SCANEMPTY)
- if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
- return ret;
- for (j = 0; j < len; j++) {
- if (!(bd->options & NAND_BBT_SCANEMPTY)) {
- size_t retlen;
- /* Read the full oob until read_oob is fixed to
- * handle single byte reads for 16 bit buswidth */
- ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
- mtd->oobsize, &retlen, buf);
- if (ret)
- return ret;
- if (check_short_pattern (buf, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
- i >> 1, (unsigned int) from);
- break;
- }
- } else {
- if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
- i >> 1, (unsigned int) from);
- break;
- }
- }
- }
- i += 2;
- from += (1 << this->bbt_erase_shift);
- }
- return 0;
- 检测这4096个block,刚开始的nand_read_raw肯定不会执行。len是2,在j循环要循环2次。
- 每次循环真正要做的事情是下面的内容:
- ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf);
- read_oob()函数在nand_scan()里被指向nand_read_oob(),这个函数在Nand_base.c文件中,看来得回Nand_base.c看看了。
- 1397 /**
- * nand_read_oob - [MTD Interface] NAND read out-of-band
- * @mtd: MTD device structure
- * @from: offset to read from
- * @len: number of bytes to read
- * @retlen: pointer to variable to store the number of read bytes
- * @buf: the databuffer to put data
- *
- * NAND read out-of-band data from the spare area
- */
- static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
- {
- 才发现oob全称是out-of-band, from是偏移量,len是读取的长度,retlen是存储指针。
- 1409 int i, col, page, chipnr;
- struct nand_chip *this = mtd->priv;
- int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
- DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i/n", (unsigned int) from, (int) len);
- /* Shift to get page */
- page = (int)(from >> this->page_shift);
- chipnr = (int)(from >> this->chip_shift);
- /* Mask to get column */
- col = from & (mtd->oobsize - 1);
- /* Initialize return length value */
- *retlen = 0;
- 一些初始化,blockcheck对于1208应该是(1<<(0xe-0x9)-1)=31。然后通过偏移量计算出要读取oob区的page,chipnr和col。
- 1425 /* Do not allow reads past end of device */
- if ((from + len) > mtd->size) {
- DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device/n");
- *retlen = 0;
- return -EINVAL;
- }
- /* Grab the lock and see if the device is available */
- nand_get_device (this, mtd , FL_READING);
- /* Select the NAND device */
- this->select_chip(mtd, chipnr);
- /* Send the read command */
- this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
- 不允许非法的读取,获取芯片控制权,发送读取OOB命令,这儿会调用具体硬件驱动中相关的Nand控制函数。
- 1442 /*
- * Read the data, if we read more than one page
- * oob data, let the device transfer the data !
- */
- i = 0;
- while (i < len) {
- int thislen = mtd->oobsize - col;
- thislen = min_t(int, thislen, len);
- this->read_buf(mtd, &buf[i], thislen);
- i += thislen;
- /* Read more ? */
- if (i < len) {
- page++;
- col = 0;
- /* Check, if we cross a chip boundary */
- if (!(page & this->pagemask)) {
- chipnr++;
- this->select_chip(mtd, -1);
- this->select_chip(mtd, chipnr);
- }
- /* Apply delay or wait for ready/busy pin
- * Do this before the AUTOINCR check, so no problems
- * arise if a chip which does auto increment
- * is marked as NOAUTOINCR by the board driver.
- */
- if (!this->dev_ready)
- udelay (this->chip_delay);
- else
- nand_wait_ready(mtd);
- /* Check, if the chip supports auto page increment
- * or if we have hit a block boundary.
- */
- if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
- /* For subsequent page reads set offset to 0 */
- this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
- }
- }
- }
- /* Deselect and wake up anyone waiting on the device */
- nand_release_device(mtd);
- /* Return happy */
- *retlen = len;
- return 0;
- 开始读取数据,while循环只要获取到oob区大小的数据即可。注意,read_buf才是最底层的读写Nand的函数,在我们的驱动中根据参数可以实现读取528byte全部内容,或者16byte的oob区。
- 如果一次没读完,就要继续再读,根据我们实际使用经验好像没出现过这种问题。
- 最后Return Happy~回到Nand_bbt.c的creat_bbt()函数,348行,好像都快忘记我们还没出creat_bbt()函数呢,我再把他贴一遍吧:
- 346 /* Read the full oob until read_oob is fixed to
- * handle single byte reads for 16 bit buswidth */
- ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
- mtd->oobsize, &retlen, buf);
- if (ret)
- return ret;
- if (check_short_pattern (buf, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
- i >> 1, (unsigned int) from);
- break;
- }
- } else {
- if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
- i >> 1, (unsigned int) from);
- break;
- }
- }
- }
- i += 2;
- from += (1 << this->bbt_erase_shift);
- }
- return 0;
- }
- 刚刚如果不是Ruturn Happy,下面的352行就会返回错误了。接着会调用check_short_pattern()这个函数。
- 113 /**
- * check_short_pattern - [GENERIC] check if a pattern is in the buffer
- * @buf: the buffer to search
- * @td: search pattern deor
- *
- * Check for a pattern at the given place. Used to search bad block
- * tables and good / bad block identifiers. Same as check_pattern, but
- * no optional empty check
- *
- */
- static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td)
- {
- int i;
- uint8_t *p = buf;
- /* Compare the pattern */
- for (i = 0; i < td->len; i++) {
- if (p[td->offs + i] != td->pattern[i])
- return -1;
- }
- return 0;
- }
- 检查读到的oob区是不是坏块就靠这个函数了。前面放了好久的struct nand_bbt_descr smallpage_memorybased终于用上了,挨个对比,有一个不一样直接返回-1,坏块就这样产生了。下面会将坏块的位置打印出来,并且将坏块记录在bbt表里面,在nand_scan_bbt()函数的开始我们就为bbt申请了空间。
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- 为啥要右移3bit呢?首先i要右移1bit,因为前面乘以了2。由于没个block占用2bit的空间,一个char变量8bit,所以还再要右移2bit吧。
- 下面的check_pattern()函数调用不到的。
- 依次检测完所有block,creat_bbt()函数也顺利返回。
- 这样nand_memory_bbt()函数也正确返回。
- 接着是nand_scan_bbt()同样顺利结束。
- 最后nand_default_bbt()完成。
- 整个nand_scan()的工作终于完成咯,好长。
- bbt坏块管理日月 发表于 - 2010-3-2 9:59:002推荐前面看到在nand_scan()函数的最后将会跳至scan_bbt()函数,这个函数在nand_scan里面有定义:2415 if (!this->scan_bbt)2416 this->scan_bbt = nand_default_bbt;nand_default_bbt()位于Nand_bbt.c文件中。1047 /** * nand_default_bbt - [NAND Interface] Select a default bad block table for the device * @mtd: MTD device structure * * This selects the default bad block table * support for the device and calls the nand_scan_bbt **/ int nand_default_bbt (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv;这个函数的作用是建立默认的坏块表。1059 /* Default for AG-AND. We must use a flash based * bad block table as the devices have factory marked * _good_ blocks. Erasing those blocks leads to loss * of the good / bad information, so we _must_ store* this information in a good / bad table during* startup */ if (this->options & NAND_IS_AND) { /* Use the default pattern deors */ if (!this->bbt_td) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } this->options |= NAND_USE_FLASH_BBT; return nand_scan_bbt (mtd, &agand_flashbased); }如果Flash的类型是AG-AND(这种Flash类型比较特殊,既不是MLC又不是SLC,因此不去深究了,而且好像瑞萨要把它淘汰掉),需要使用默认的模式描述符,最后再进入nand_scan_bbt()函数。1078 /* Is a flash based bad block table requested ? */ if (this->options & NAND_USE_FLASH_BBT) { /* Use the default pattern deors */ if (!this->bbt_td) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } if (!this->badblock_pattern) { this->badblock_pattern = (mtd->oobblock > 512) ? &largepage_flashbased : &smallpage_flashbased; } } else { this->bbt_td = NULL; this->bbt_md = NULL; if (!this->badblock_pattern) { this->badblock_pattern = (mtd->oobblock > 512) ? &largepage_memorybased : &smallpage_memorybased; } } return nand_scan_bbt (mtd, this->badblock_pattern);如果Flash芯片需要使用坏块表,对于1208芯片来说是使用smallpage_memorybased。985 static struct nand_bbt_descr smallpage_memorybased = { .options = NAND_BBT_SCAN2NDPAGE, .offs = 5, .len = 1, .pattern = scan_ff_pattern };暂时没看到如何使用这些赋值,先放着。后面检测坏块时用得着。1099 return nand_scan_bbt (mtd, this->badblock_pattern);最后将badblock_pattern作为参数,调用nand_can_bbt函数。844 /** * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) * @mtd: MTD device structure * @bd: deor for the good/bad block search pattern * * The checks, if a bad block table(s) is/are already * available. If not it scans the device for manufacturer * marked good / bad blocks and writes the bad block table(s) to * the selected place. * * The bad block table memory is allocated here. It must be freed * by calling the nand_free_bbt . * */ int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) {检测、寻找、读取甚至建立坏块表。函数检测是否已经存在一张坏块表,否则建立一张。坏块表的内存分配也在这个函数中。860 struct nand_chip *this = mtd->priv;int len, res = 0;uint8_t *buf;struct nand_bbt_descr *td = this->bbt_td;struct nand_bbt_descr *md = this->bbt_md;len = mtd->size >> (this->bbt_erase_shift + 2);/* Allocate memory (2bit per block) */this->bbt = kmalloc (len, GFP_KERNEL);if (!this->bbt) { printk (KERN_ERR "nand_scan_bbt: Out of memory/n"); return -ENOMEM;}/* Clear the memory bad block table */memset (this->bbt, 0x00, len);一些赋值、变量声明、内存分配,每个block分配2bit的空间。1208有4096个block,应该分配4096*2bit的空间。877 /* If no primary table decriptor is given, scan the device* to build a memory based bad block table*/if (!td) { if ((res = nand_memory_bbt(mtd, bd))) { printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT/n"); kfree (this->bbt); this->bbt = NULL; } return res;}如果没有提供ptd,就扫描设备并建立一张。这里调用了nand_memory_bbt()这个内联函数。653 /** * nand_memory_bbt - [GENERIC] create a memory based bad block table * @mtd: MTD device structure * @bd: deor for the good/bad block search pattern * * The creates a memory based bbt by scanning the device * for manufacturer / software marked good / bad blocks */ static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; bd->options &= ~NAND_BBT_SCANEMPTY; return create_bbt (mtd, this->data_buf, bd, -1); }函数的作用是建立一张基于memory的坏块表。将操作符的NAND_BBT_SCANEMPTY清除,并继续调用creat_bbt()函数。271 /** * create_bbt - [GENERIC] Create a bad block table by scanning the device * @mtd: MTD device structure * @buf: temporary buffer * @bd: deor for the good/bad block search pattern * @chip: create the table for a specific chip, -1 read all chips. * Applies only if NAND_BBT_PERCHIP option is set * * Create a bad block table by scanning the device * for the given good/bad block identify pattern */ static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) {真正的建立坏块表函数。chip参数是-1表示读取所有的芯片。284 struct nand_chip *this = mtd->priv;int i, j, numblocks, len, scanlen;int startblock;loff_t from;size_t readlen, ooblen;printk (KERN_INFO "Scanning device for bad blocks/n");一些变量声明,开机时那句话就是在这儿打印出来的。292 if (bd->options & NAND_BBT_SCANALLPAGES)len = 1 << (this->bbt_erase_shift - this->page_shift);else { if (bd->options & NAND_BBT_SCAN2NDPAGE) len = 2; else len = 1;}在前面我们定义了smallpage_memorybased这个结构体,现在里面NAND_BBT_SCANALLPAGES的终于用上了,对于1208芯片来说,len=2。304 if (!(bd->options & NAND_BBT_SCANEMPTY)) { /* We need only read few bytes from the OOB area */ scanlen = ooblen = 0; readlen = bd->len;} else { /* Full page content should be read */ scanlen = mtd->oobblock + mtd->oobsize; readlen = len * mtd->oobblock; ooblen = len * mtd->oobsize;}前面已经将NAND_BBT_SCANEMPTY清除了,这里肯定执行else的内容。需要将一页内容都读取出来。316 if (chip == -1) { /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it * makes shifting and masking less painful */ numblocks = mtd->size >> (this->bbt_erase_shift - 1); startblock = 0; from = 0;} else { if (chip >= this->numchips) { printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)/n", chip + 1, this->numchips); return -EINVAL; } numblocks = this->chipsize >> (this->bbt_erase_shift - 1); startblock = chip * numblocks; numblocks += startblock; from = startblock << (this->bbt_erase_shift - 1);}前面提到chip为-1,实际上我们只有一颗芯片,numblocks这儿是4096*2。335 for (i = startblock; i < numblocks;) { int ret; if (bd->options & NAND_BBT_SCANEMPTY) if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen))) return ret; for (j = 0; j < len; j++) { if (!(bd->options & NAND_BBT_SCANEMPTY)) { size_t retlen; /* Read the full oob until read_oob is fixed to * handle single byte reads for 16 bit buswidth */ ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf); if (ret) return ret; if (check_short_pattern (buf, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } else { if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } } i += 2; from += (1 << this->bbt_erase_shift);}return 0;检测这4096个block,刚开始的nand_read_raw肯定不会执行。len是2,在j循环要循环2次。每次循环真正要做的事情是下面的内容:ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf);read_oob()函数在nand_scan()里被指向nand_read_oob(),这个函数在Nand_base.c文件中,看来得回Nand_base.c看看了。1397 /** * nand_read_oob - [MTD Interface] NAND read out-of-band * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * NAND read out-of-band data from the spare area */static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) {才发现oob全称是out-of-band, from是偏移量,len是读取的长度,retlen是存储指针。1409 int i, col, page, chipnr;struct nand_chip *this = mtd->priv;int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i/n", (unsigned int) from, (int) len);/* Shift to get page */page = (int)(from >> this->page_shift);chipnr = (int)(from >> this->chip_shift);/* Mask to get column */col = from & (mtd->oobsize - 1);/* Initialize return length value */*retlen = 0;一些初始化,blockcheck对于1208应该是(1<<(0xe-0x9)-1)=31。然后通过偏移量计算出要读取oob区的page,chipnr和col。1425 /* Do not allow reads past end of device */if ((from + len) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device/n"); *retlen = 0; return -EINVAL;}/* Grab the lock and see if the device is available */nand_get_device (this, mtd , FL_READING);/* Select the NAND device */this->select_chip(mtd, chipnr);/* Send the read command */this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);不允许非法的读取,获取芯片控制权,发送读取OOB命令,这儿会调用具体硬件驱动中相关的Nand控制函数。1442 /** Read the data, if we read more than one page* oob data, let the device transfer the data !*/i = 0;while (i < len) { int thislen = mtd->oobsize - col; thislen = min_t(int, thislen, len); this->read_buf(mtd, &buf[i], thislen); i += thislen; /* Read more ? */ if (i < len) { page++; col = 0; /* Check, if we cross a chip boundary */ if (!(page & this->pagemask)) { chipnr++; this->select_chip(mtd, -1); this->select_chip(mtd, chipnr); } /* Apply delay or wait for ready/busy pin * Do this before the AUTOINCR check, so no problems * arise if a chip which does auto increment * is marked as NOAUTOINCR by the board driver. */ if (!this->dev_ready) udelay (this->chip_delay); else nand_wait_ready(mtd); /* Check, if the chip supports auto page increment * or if we have hit a block boundary. */ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { /* For subsequent page reads set offset to 0 */ this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); } }}/* Deselect and wake up anyone waiting on the device */nand_release_device(mtd);/* Return happy */*retlen = len;return 0;开始读取数据,while循环只要获取到oob区大小的数据即可。注意,read_buf才是最底层的读写Nand的函数,在我们的驱动中根据参数可以实现读取528byte全部内容,或者16byte的oob区。如果一次没读完,就要继续再读,根据我们实际使用经验好像没出现过这种问题。最后Return Happy~回到Nand_bbt.c的creat_bbt()函数,348行,好像都快忘记我们还没出creat_bbt()函数呢,我再把他贴一遍吧:346 /* Read the full oob until read_oob is fixed to * handle single byte reads for 16 bit buswidth */ ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf); if (ret) return ret; if (check_short_pattern (buf, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } else { if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } } i += 2; from += (1 << this->bbt_erase_shift);}return 0; }刚刚如果不是Ruturn Happy,下面的352行就会返回错误了。接着会调用check_short_pattern()这个函数。113 /** * check_short_pattern - [GENERIC] check if a pattern is in the buffer * @buf: the buffer to search * @td: search pattern deor * * Check for a pattern at the given place. Used to search bad block * tables and good / bad block identifiers. Same as check_pattern, but * no optional empty check * */ static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td){int i;uint8_t *p = buf;/* Compare the pattern */for (i = 0; i < td->len; i++) { if (p[td->offs + i] != td->pattern[i]) return -1;}return 0;}检查读到的oob区是不是坏块就靠这个函数了。前面放了好久的struct nand_bbt_descr smallpage_memorybased终于用上了,挨个对比,有一个不一样直接返回-1,坏块就这样产生了。下面会将坏块的位置打印出来,并且将坏块记录在bbt表里面,在nand_scan_bbt()函数的开始我们就为bbt申请了空间。this->bbt[i >> 3] |= 0x03 << (i & 0x6);为啥要右移3bit呢?首先i要右移1bit,因为前面乘以了2。由于没个block占用2bit的空间,一个char变量8bit,所以还再要右移2bit吧。 下面的check_pattern()函数调用不到的。依次检测完所有block,creat_bbt()函数也顺利返回。这样nand_memory_bbt()函数也正确返回。接着是nand_scan_bbt()同样顺利结束。最后nand_default_bbt()完成。整个nand_scan()的工作终于完成咯,好长。
bbt坏块管理日月 发表于 - 2010-3-2 9:59:002推荐前面看到在nand_scan()函数的最后将会跳至scan_bbt()函数,这个函数在nand_scan里面有定义:2415 if (!this->scan_bbt)2416 this->scan_bbt = nand_default_bbt;nand_default_bbt()位于Nand_bbt.c文件中。1047 /** * nand_default_bbt - [NAND Interface] Select a default bad block table for the device * @mtd: MTD device structure * * This selects the default bad block table * support for the device and calls the nand_scan_bbt **/ int nand_default_bbt (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv;这个函数的作用是建立默认的坏块表。1059 /* Default for AG-AND. We must use a flash based * bad block table as the devices have factory marked * _good_ blocks. Erasing those blocks leads to loss * of the good / bad information, so we _must_ store* this information in a good / bad table during* startup */ if (this->options & NAND_IS_AND) { /* Use the default pattern deors */ if (!this->bbt_td) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } this->options |= NAND_USE_FLASH_BBT; return nand_scan_bbt (mtd, &agand_flashbased); }如果Flash的类型是AG-AND(这种Flash类型比较特殊,既不是MLC又不是SLC,因此不去深究了,而且好像瑞萨要把它淘汰掉),需要使用默认的模式描述符,最后再进入nand_scan_bbt()函数。1078 /* Is a flash based bad block table requested ? */ if (this->options & NAND_USE_FLASH_BBT) { /* Use the default pattern deors */ if (!this->bbt_td) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } if (!this->badblock_pattern) { this->badblock_pattern = (mtd->oobblock > 512) ? &largepage_flashbased : &smallpage_flashbased; } } else { this->bbt_td = NULL; this->bbt_md = NULL; if (!this->badblock_pattern) { this->badblock_pattern = (mtd->oobblock > 512) ? &largepage_memorybased : &smallpage_memorybased; } } return nand_scan_bbt (mtd, this->badblock_pattern);如果Flash芯片需要使用坏块表,对于1208芯片来说是使用smallpage_memorybased。985 static struct nand_bbt_descr smallpage_memorybased = { .options = NAND_BBT_SCAN2NDPAGE, .offs = 5, .len = 1, .pattern = scan_ff_pattern };暂时没看到如何使用这些赋值,先放着。后面检测坏块时用得着。1099 return nand_scan_bbt (mtd, this->badblock_pattern);最后将badblock_pattern作为参数,调用nand_can_bbt函数。844 /** * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) * @mtd: MTD device structure * @bd: deor for the good/bad block search pattern * * The checks, if a bad block table(s) is/are already * available. If not it scans the device for manufacturer * marked good / bad blocks and writes the bad block table(s) to * the selected place. * * The bad block table memory is allocated here. It must be freed * by calling the nand_free_bbt . * */ int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) {检测、寻找、读取甚至建立坏块表。函数检测是否已经存在一张坏块表,否则建立一张。坏块表的内存分配也在这个函数中。860 struct nand_chip *this = mtd->priv;int len, res = 0;uint8_t *buf;struct nand_bbt_descr *td = this->bbt_td;struct nand_bbt_descr *md = this->bbt_md;len = mtd->size >> (this->bbt_erase_shift + 2);/* Allocate memory (2bit per block) */this->bbt = kmalloc (len, GFP_KERNEL);if (!this->bbt) { printk (KERN_ERR "nand_scan_bbt: Out of memory/n"); return -ENOMEM;}/* Clear the memory bad block table */memset (this->bbt, 0x00, len);一些赋值、变量声明、内存分配,每个block分配2bit的空间。1208有4096个block,应该分配4096*2bit的空间。877 /* If no primary table decriptor is given, scan the device* to build a memory based bad block table*/if (!td) { if ((res = nand_memory_bbt(mtd, bd))) { printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT/n"); kfree (this->bbt); this->bbt = NULL; } return res;}如果没有提供ptd,就扫描设备并建立一张。这里调用了nand_memory_bbt()这个内联函数。653 /** * nand_memory_bbt - [GENERIC] create a memory based bad block table * @mtd: MTD device structure * @bd: deor for the good/bad block search pattern * * The creates a memory based bbt by scanning the device * for manufacturer / software marked good / bad blocks */ static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; bd->options &= ~NAND_BBT_SCANEMPTY; return create_bbt (mtd, this->data_buf, bd, -1); }函数的作用是建立一张基于memory的坏块表。将操作符的NAND_BBT_SCANEMPTY清除,并继续调用creat_bbt()函数。271 /** * create_bbt - [GENERIC] Create a bad block table by scanning the device * @mtd: MTD device structure * @buf: temporary buffer * @bd: deor for the good/bad block search pattern * @chip: create the table for a specific chip, -1 read all chips. * Applies only if NAND_BBT_PERCHIP option is set * * Create a bad block table by scanning the device * for the given good/bad block identify pattern */ static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) {真正的建立坏块表函数。chip参数是-1表示读取所有的芯片。284 struct nand_chip *this = mtd->priv;int i, j, numblocks, len, scanlen;int startblock;loff_t from;size_t readlen, ooblen;printk (KERN_INFO "Scanning device for bad blocks/n");一些变量声明,开机时那句话就是在这儿打印出来的。292 if (bd->options & NAND_BBT_SCANALLPAGES)len = 1 << (this->bbt_erase_shift - this->page_shift);else { if (bd->options & NAND_BBT_SCAN2NDPAGE) len = 2; else len = 1;}在前面我们定义了smallpage_memorybased这个结构体,现在里面NAND_BBT_SCANALLPAGES的终于用上了,对于1208芯片来说,len=2。304 if (!(bd->options & NAND_BBT_SCANEMPTY)) { /* We need only read few bytes from the OOB area */ scanlen = ooblen = 0; readlen = bd->len;} else { /* Full page content should be read */ scanlen = mtd->oobblock + mtd->oobsize; readlen = len * mtd->oobblock; ooblen = len * mtd->oobsize;}前面已经将NAND_BBT_SCANEMPTY清除了,这里肯定执行else的内容。需要将一页内容都读取出来。316 if (chip == -1) { /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it * makes shifting and masking less painful */ numblocks = mtd->size >> (this->bbt_erase_shift - 1); startblock = 0; from = 0;} else { if (chip >= this->numchips) { printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)/n", chip + 1, this->numchips); return -EINVAL; } numblocks = this->chipsize >> (this->bbt_erase_shift - 1); startblock = chip * numblocks; numblocks += startblock; from = startblock << (this->bbt_erase_shift - 1);}前面提到chip为-1,实际上我们只有一颗芯片,numblocks这儿是4096*2。335 for (i = startblock; i < numblocks;) { int ret; if (bd->options & NAND_BBT_SCANEMPTY) if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen))) return ret; for (j = 0; j < len; j++) { if (!(bd->options & NAND_BBT_SCANEMPTY)) { size_t retlen; /* Read the full oob until read_oob is fixed to * handle single byte reads for 16 bit buswidth */ ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf); if (ret) return ret; if (check_short_pattern (buf, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } else { if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } } i += 2; from += (1 << this->bbt_erase_shift);}return 0;检测这4096个block,刚开始的nand_read_raw肯定不会执行。len是2,在j循环要循环2次。每次循环真正要做的事情是下面的内容:ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf);read_oob()函数在nand_scan()里被指向nand_read_oob(),这个函数在Nand_base.c文件中,看来得回Nand_base.c看看了。1397 /** * nand_read_oob - [MTD Interface] NAND read out-of-band * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * NAND read out-of-band data from the spare area */static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) {才发现oob全称是out-of-band, from是偏移量,len是读取的长度,retlen是存储指针。1409 int i, col, page, chipnr;struct nand_chip *this = mtd->priv;int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i/n", (unsigned int) from, (int) len);/* Shift to get page */page = (int)(from >> this->page_shift);chipnr = (int)(from >> this->chip_shift);/* Mask to get column */col = from & (mtd->oobsize - 1);/* Initialize return length value */*retlen = 0;一些初始化,blockcheck对于1208应该是(1<<(0xe-0x9)-1)=31。然后通过偏移量计算出要读取oob区的page,chipnr和col。1425 /* Do not allow reads past end of device */if ((from + len) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device/n"); *retlen = 0; return -EINVAL;}/* Grab the lock and see if the device is available */nand_get_device (this, mtd , FL_READING);/* Select the NAND device */this->select_chip(mtd, chipnr);/* Send the read command */this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);不允许非法的读取,获取芯片控制权,发送读取OOB命令,这儿会调用具体硬件驱动中相关的Nand控制函数。1442 /** Read the data, if we read more than one page* oob data, let the device transfer the data !*/i = 0;while (i < len) { int thislen = mtd->oobsize - col; thislen = min_t(int, thislen, len); this->read_buf(mtd, &buf[i], thislen); i += thislen; /* Read more ? */ if (i < len) { page++; col = 0; /* Check, if we cross a chip boundary */ if (!(page & this->pagemask)) { chipnr++; this->select_chip(mtd, -1); this->select_chip(mtd, chipnr); } /* Apply delay or wait for ready/busy pin * Do this before the AUTOINCR check, so no problems * arise if a chip which does auto increment * is marked as NOAUTOINCR by the board driver. */ if (!this->dev_ready) udelay (this->chip_delay); else nand_wait_ready(mtd); /* Check, if the chip supports auto page increment * or if we have hit a block boundary. */ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { /* For subsequent page reads set offset to 0 */ this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); } }}/* Deselect and wake up anyone waiting on the device */nand_release_device(mtd);/* Return happy */*retlen = len;return 0;开始读取数据,while循环只要获取到oob区大小的数据即可。注意,read_buf才是最底层的读写Nand的函数,在我们的驱动中根据参数可以实现读取528byte全部内容,或者16byte的oob区。如果一次没读完,就要继续再读,根据我们实际使用经验好像没出现过这种问题。最后Return Happy~回到Nand_bbt.c的creat_bbt()函数,348行,好像都快忘记我们还没出creat_bbt()函数呢,我再把他贴一遍吧:346 /* Read the full oob until read_oob is fixed to * handle single byte reads for 16 bit buswidth */ ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf); if (ret) return ret; if (check_short_pattern (buf, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } else { if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n", i >> 1, (unsigned int) from); break; } } } i += 2; from += (1 << this->bbt_erase_shift);}return 0; }刚刚如果不是Ruturn Happy,下面的352行就会返回错误了。接着会调用check_short_pattern()这个函数。113 /** * check_short_pattern - [GENERIC] check if a pattern is in the buffer * @buf: the buffer to search * @td: search pattern deor * * Check for a pattern at the given place. Used to search bad block * tables and good / bad block identifiers. Same as check_pattern, but * no optional empty check * */ static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td){int i;uint8_t *p = buf;/* Compare the pattern */for (i = 0; i < td->len; i++) { if (p[td->offs + i] != td->pattern[i]) return -1;}return 0;}检查读到的oob区是不是坏块就靠这个函数了。前面放了好久的struct nand_bbt_descr smallpage_memorybased终于用上了,挨个对比,有一个不一样直接返回-1,坏块就这样产生了。下面会将坏块的位置打印出来,并且将坏块记录在bbt表里面,在nand_scan_bbt()函数的开始我们就为bbt申请了空间。this->bbt[i >> 3] |= 0x03 << (i & 0x6);为啥要右移3bit呢?首先i要右移1bit,因为前面乘以了2。由于没个block占用2bit的空间,一个char变量8bit,所以还再要右移2bit吧。 下面的check_pattern()函数调用不到的。依次检测完所有block,creat_bbt()函数也顺利返回。这样nand_memory_bbt()函数也正确返回。接着是nand_scan_bbt()同样顺利结束。最后nand_default_bbt()完成。整个nand_scan()的工作终于完成咯,好长。
===============================================================
由于NAND Flash的现有工艺不能保证NAND的Memory Array在其生命周期中保持性能的可靠,因此在NAND芯片出厂的时候,厂家只能保证block 0不是坏块,对于其它block,则均有可能存在坏块,而且NAND芯片在使用的过程中也很容易产生坏块。因此,我们在读写NAND FLASH 的时候,需要检测坏块,同时还需在NAND驱动中加入坏块管理的功能。 NAND驱动在加载的时候,会调用nand_scan函数,对bad block table的搜寻,建立等操作就是在这个函数的第二部分,即nand_scan_tail函数中完成的。
在 nand_scan_tail函数中,会首先检查struct nand_chip结构体中的options成员变量是否被赋上了NAND_SKIP_BBTSCAN,这个宏表示跳过扫描bbt。所以,只有当你的 driver中没有为options定义NAND_SKIP_BBTSCAN时,MTD才会继续与bbt相关工作,即调用struct nand_chip中的scan_bbt函数指针所指向的函数,在MTD中,这个函数指针指向nand_default_bbt函数。
bbt有两种存储方式,一种是把bbt存储在NAND芯片中,另一种是把bbt存储在内存中。对于前者,好处是驱动加载更快,因为它只会在第一次加载NAND驱动时扫描整个NAND芯片,然后在NAND芯片的某个block中建立bbt,坏处是需要至少消耗NAND芯片一个block的存储容量;而对于后者,好处是不会耗用NAND芯片的容量,坏处是驱动加载稍慢,因为存储在内存中的bbt每次断电后都不会保存,所以在每次加载NAND驱动时,都会扫描整个NAND芯片,以便建立bbt。
如果你系统中的NAND芯片容量不是太大的话,我建议还是把bbt存储在内存中比较好,因为根据本人的使用经验,对一块容量为2G bits的NAND芯片,分别采用这两种存储方式的驱动的加载速度相差不大,甚至几乎感觉不出来。
建立bbt后,以后在做擦除等操作时,就不用每次都去验证当前block是否是个坏块了,因为从bbt中就可以得到这个信息。另外,若在读写等操作时,发现产生了新的坏块,那么除了标志这个block是个坏块外,也还需更新bbt。
接下来,介绍一下MTD是如何查找或者建立bbt的。
1、MTD中与bbt相关的结构体
struct nand_chip中的scan_bbt函数指针所指向的函数,即nand_default_bbt函数会首先检查struct nand_chip中options成员变量,如果当前NAND芯片是AG-AND类型的,会强制把bbt存储在NAND芯片中,因为这种类型的NAND 芯片中含有厂家标注的“好块”信息,擦除这些block时会导致丢失坏块信息。
接着 nand_default_bbt函数会再次检查struct nand_chip中options成员变量,根据它是否定义了NAND_USE_FLASH_BBT,而为struct nand_chip中3个与bbt相关的结构体附上不同的值,然后再统一调用nand_scan_bbt函数,nand_scan_bbt函数会那3个结构体的不同的值做不同的动作,或者把bbt存储在NAND芯片中,或者把bbt存储在内存中。
在struct nand_chip中与bbt相关的结构体如下:
struct nand_chip { …… uint8_t *bbt struct nand_bbt_descr *bbt_td; struct nand_bbt_descr *bbt_md; struct nand_bbt_descr *badblock_pattern; ……
};
bbt指向一块在nand_default_bbt函数中分配的内存,若options中没有定义NAND_USE_FLASH_BBT,MTD就直接在bbt指向的内存中建立bbt,否则就会先从NAND芯片中查找bbt是否存在,若存在,就把bbt的内容读出来并保存到bbt指向的内存中,若不存在,则在bbt 指向的内存中建立bbt,最后把它写入到NAND芯片中去。
bbt_td、bbt_md和badblock_pattern就是在nand_default_bbt函数中赋值的3个结构体。它们虽然是相同的结构体类型,但却有不同的作用和含义。 其中bbt_td和bbt_md是主bbt和镜像bbt的描述符(镜像bbt主要用来对bbt的update和备份),它们只在把bbt存储在NAND芯片的情况下使用,用来从NAND芯片中查找bbt。若bbt存储在内存中,bbt_td和bbt_md将会被赋值为NULL。
badblock_pattern就是坏块信息的pattern,其中定义了坏块信息在oob中的存储位置,以及内容(即用什么值表示这个block是个坏块)。
通常用1或2个字节来标志一个block是否为坏块,这1或2个字节就是坏块信息,如果这1或2个字节的内容是0xff,那就说明这个block是好的,否则就是坏块。对于坏块信息在NAND芯片中的存储位置,small page(每页512 Byte)和big page(每页2048 Byte)的两种NAND芯片不尽相同。一般来说,small page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第六个字节中,而big page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第1和第2个字节中。
我不能确定是否所有的NAND芯片都是如此布局,但应该绝大多数NAND芯片是这样的,不过,即使某种NAND芯片的坏块信息不是这样的存储方式也没关系,因为我们可以在badblock_pattern中自己指定坏块信息的存储位置,以及用什么值来标志坏块(其实这个值表示的应该是“好块”,因为MTD会把从oob中坏块信息存储位置读出的内容与这个值做比较,若相等,则表示是个“好块”,否则就是坏块)。
bbt_td、bbt_md和badblock_pattern的结构体类型定义如下:
struct nand_bbt_descr { int options; int pages[NAND_MAX_CHIPS]; int offs; int veroffs; uint8_t version[NAND_MAX_CHIPS]; int len; int maxblocks; int reserved_block_code; uint8_t *pattern;
};
options:bad block table或者bad block的选项,可用的选择以及各选项具体表示什么含义,可以参考<linux/mtd/nand.h>。
pages:bbt 专用。在查找bbt的时候,若找到了bbt,就把bbt所在的page号保存在这个成员变量中。若没找到bbt,就会把新建立的bbt的保存位置赋值给它。因为系统中可能会有多个NAND芯片,我们可以为每一片NAND芯片建立一个bbt,也可以只在其中一片NAND芯片中建立唯一的一个bbt,所以这里的pages是个维数为NAND_MAX_CHIPS的数值,用来保存每一片NAND芯片的bbt位置。当然,若只建立了一个bbt,那么就只使用 pages[0]。
offs、len和pattern:MTD会从oob的offs中读出len长度的内容,然后与pattern指针指向的内容做比较,若相等,则表示找到了bbt,或者表示这个block是好的。
veroffs和version:bbt专用。MTD会从oob的veroffs中读出一个字节的内容,作为bbt的版本值保存在version中。
maxblocks:bbt专用。MTD在查找bbt的时候,不会查找NAND芯片中所有的block,而是最多查找maxblocks个block。
2、bbt存储在内存中时的工作流程
前文说过,不管bbt是存储在NAND芯片中,还是存储在内存中,nand_default_bbt函数都会调用nand_scan_bbt函数。
nand_scan_bbt函数会判断bbt_td的值,若是NULL,则表示bbt存储在内存中,它就在调用nand_memory_bbt函数后返回。nand_memory_bbt函数的主要工作就是在内存中建立bbt,其实就是调用了create_bbt函数。
create_bbt 函数的工作方式很简单,就是扫描NAND芯片所有的block,读取每个block中第一个page的oob内容,然后根据oob中的坏块信息建立起 bbt,可以参见上节关于struct nand_bbt_descr中的offs、len和pattern成员变量的解释。
3、bbt存储在NAND芯片时的工作流程
相对于把bbt存储在内存中,这种方式的工作流程稍显复杂一点。
nand_scan_bbt函数首先从NAND芯片中读取bbt的内容,它读取的方式分为两种:
其一是调用read_abs_bbts函数直接从给定的page地址读取,那么这个page地址在什么时候指定呢?就是在你的NAND driver中指定。前文说过,在struct nand_chip结构体中有两个成员变量,分别是bbt_td和bbt_md,MTD为它们附上了default的值,但是你也可以根据你的需要为它们附上你自己定义的值。假如你为bbt_td和bbt_md的options成员变量定义了NAND_BBT_ABSPAGE,同时又把你的bbt所在的 page地址保存在bbt_td和bbt_md的pages成员变量中,MTD就可以直接在这个page地址中读取bbt了。值得一提的是,在实际使用时一般不这么干,因为你不能保证你保存bbt的那个block就永远不会坏,而且这样也不灵活;
其二是调用那个search_read_bbts函数试着在NAND芯片的maxblocks(请见上文关于struct nand_bbt_descr中maxblocks的说明)个block中查找bbt是否存在,若找到,就可以读取bbt了。
MTD 查找bbt的过程为:如果你在bbt_td和bbt_md的options 成员变量中定义了 NAND_BBT_LASTBLOCK,那么MTD就会从NAND芯片的最后一个block开始查找(在default情况下,MTD就是这么干的),否则就从第一个block开始查找。
与查找oob中的坏块信息时类似,MTD会从所查找block的第一个page的oob中读取内容,然后与bbt_td或bbt_md中patter指向的内容做比较,若相等,则表示找到了bbt,否则就继续查找下一个block。顺利的情况下,只需查找一个block中就可以找到bbt,否则MTD最多会查找maxblocks个block。 若找到了bbt,就把该bbt所在的page地址保存到bbt_td或bbt_md的pages成员变量中,否则pages的值为-1。
如果系统中有多片NAND芯片,并且为每一片NAND芯片都建立一个bbt,那么就会在每片NAND芯片上重复以上过程。
接着,nand_scan_bbt函数会调用check_create函数,该函数会判断是否找到了bbt,其实就是判断bbt_td或者bbt_md中 pages成员变量的值是否有效。若找到了bbt,就会把bbt从NAND芯片中读取出来,并保存到struct nand_chip中bbt指针指向的内存中;若没找到,就会调用create_bbt函数建立bbt(与bbt存储在内存中时情况一样),同时把bbt 写入到NAND芯片中去。
**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
MTD坏块管理机制中,起着核心作用的数据结构是nand_chip,在此以TCC8900-Linux中MTD的坏块管理为例作一次介绍。
MTD在Linux内核中同样以模块的形式被启用,TCC_MTD_IO_Init()函数完成了nand_chip初始化、mtd_info初始注册,
坏块表的管理机制建立等工作。
nand_chip在TCC_MTD_IO_Init函数中的实例名称是this,mtd_info 的实例名称为TCC_mtd,这里有一个比较巧妙的处理方法:
TCC_mtd=kmalloc(sizeof(struct mtd_info)+sizeof(struct nand_chip),GFP_KERNEL);
this=(struct nand_chip*)(&TCC_mtd[1]);
在以后的操作中,只需得知TCC_mtd即可找到对应的nan_chip实例。
获得必要的信息后(包括nand_chip方法的绑定),流程进入nand_scan(TCC_mtd,1).
nand_scan(struct mdt_info *mtd, int maxchips);
调用nand_scan_ident(mtd,maxchips)和nand_scan_tail(mtd);
nand_scan_ident(...)调用了一个很重要的函数:nand_get_flash_type(...)
*从nand_get_flash_type(...)函数中可以看出每个nandflash前几个字节所代表的意思都是约定好了的:
第一个字节:制造商ID
第二个字节:设备ID
第三个字节:MLC 数据
第四个字节:extid (比较总要)
其中设备ID是访问nand_flash_ids表的参照,该表在drivers/mtd/nand/nand_ids.c中定义
Linux内核在nand_flash_ids参照表中,通过匹配上述设备ID来查找nandflash的详细信息,
nand_flash_ids中的举例如下:
struct nand_flash_dev nand_flash_ids[]={
......
{"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
{"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
{"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
......
}
466 struct nand_flash_dev {
467 char *name;
468 int id;
469 unsigned long pagesize;
470 unsigned long chipsize;
471 unsigned long erasesize;
472 unsigned long options;
473 };
值得一提的是,MTD子系统会把从nand_flash_ids表中找到的chipsize复制给mtd->size,这在有些应用中显得不合适,
在有些方案中,并不是把nandflash的所有存储空间都划分为MTD分区,Telechips的TCC89XX方案就是这样,4G的nandflash
上,可以划分任意大小的MTD分区,错误的mtd->size的后果非常严重,造成系统启动慢,整个MTD的坏块管理机制瘫痪等等。
随后,nand_get_flash_type通过extid计算出了以下信息:
mtd可写区大小:mtd->writesize=1024<<(extid&0x03);
这里可以看成1024*(1*2的(extid&0x03)次方),
mtdoob区大小:extid>>=2;mtd->oobsize = (8<<(extid&0x1))*(mtd->writesize>>9);
每512字节对应(8*2的(extid&0x1)次方)字节oob数据
mtd擦写块大小:extid>>=2;mtd->erasesize=(64*1024)<<(extid&0x03);
nand数据宽度 :extid>>=2;busw=(extid&0x01)?NAND_BUSEWIDTH_16:0; 现在大多为8位数据宽度
可以看出第四个字节extid的意义:
高|0 | 0 | 00 | 0 | 0 | 00 |低
|无用|数据宽度|擦写块算阶|无用|oob算阶| 可写区算阶|
nand_get_flash_type(...)还确立了nandflash中的坏块标记在oob信息中的位置:
if(mtd->writesize>512||(busw&NAND_BUSWIDTH_16))
chip->badblockpos = NAND_LARGE_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第1个字节开始处
else
chip->badblockpos = NAND_SMALL_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第6个字节开始处
对于Samsun和Hynix的MLC型nandflash,坏块标记所在的页是每块的最后一个页,而Samsung,Hynix,和AMD的SLC型nandflash
中,坏块标记分别保存在每块开始的第1,2个页中,其他型号的nandflash大多都保存在第一个也中,为此需要作下标记:
坏块标记保存在块的最后一页中:chip->options |= NAND_BBT_SCANLASTPAGE;
坏块标记保存在块的第1,2页中 :chip->options |= NAND_BBT_SCAN2NDPAGE;
nand_scan之后调用nand_scan_tail(mtd)函数,
nand_scan_tail(...)函数主要完成MTD实例中各种方法的绑定,例如:
3338 mtd->read = nand_read;
3339 mtd->write = nand_write;
3340 mtd->panic_write = panic_nand_write;
3341 mtd->read_oob = nand_read_oob;
3342 mtd->write_oob = nand_write_oob;
3343 mtd->sync = nand_sync;
nand_scan_tail(...)调用chip->scan_bbt()完成坏块表的有关操作。
chip->scan_bbt的绑定过程是在nand_scan_ident()->nand_set_defaults():chip->scan_bbt = nand_default_bbt.
即真正用于坏块操作的是nand_default_bbt函数,该函数在nand_bbt.c中被定义。
nand flash 的oob 及坏块管理的更多相关文章
- Nand Flash基础知识与坏块管理机制的研究
概述 Flash名称的由来,Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次 ...
- 【转】nand flash坏块管理OOB,BBT,ECC
0.NAND的操作管理方式 NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 ...
- nand flash坏块管理OOB,BBT,ECC
转:http://www.cnblogs.com/elect-fans/archive/2012/05/14/2500643.html 0.NAND的操作管理方式 NAND FLASH的管理方式:以三 ...
- NAND Flash大容量存储器K9F1G08U的坏块管理方法
转: http://www.360doc.com/content/11/0915/10/7715138_148381804.shtml 在进行数据存储的时候,我们需要保证数据的完整性,而NAND Fl ...
- STM32下FatFs的移植,实现了坏块管理,硬件ECC,ECC纠错,并进行擦写均衡分析
最近因项目需要,做一个数据采集的单片机平台.需要移植 FatFs .现在把最后成果贴上来. 1.摘要 在 STM32 单片机上,成功移植 FatFs 0.12b,使用的 Nand Flash 芯片为 ...
- 坏块管理(Bad Block Management,BBM)
看了很多坏块管理的文章,加上自己的理解,把整个坏块管理做了个总结. 坏块分类 1.出厂坏块 又叫初始坏块,厂商会给点最小有效块值(NVB,mininum number of valid blocks) ...
- BBM(Bad Block Management)坏块管理
不管WL算法如何高明,在使用中都会碰到一个头痛的问题,那就是坏块,所以一个SSD必须要有坏块管理机制.何谓坏块?一个闪存块里包含有不稳定的地址,不能保证读/写/擦时数据的准确性. ...
- DM365视频处理流程/DM368 NAND Flash启动揭秘
出自http://blog.csdn.net/maopig/article/details/7029930 DM365的视频处理涉及到三个相关处理器,分别是视频采集芯片.ARM处理器和视频图像协处理器 ...
- JZ2440 裸机驱动 第8章 NAND Flash控制器
本章目标 了解NAND Flash 芯片的接口 掌握通过NAND Flash控制器访问NAND Flash的方法 8.1 NAND Flash介绍和NAND Flash控制器使用 NAND ...
随机推荐
- Sort HDU - 5884(优先队列+二分)
Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- MT【127】点对个数两题之一【图论】
在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 其中任意两个点之间的距离至少为 \(1\), 证明在这 \(n\) 个点中距离为 \(1\)的点对数不超过 \(3n\). ...
- BZOJ 2157: 旅游
2157: 旅游 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1347 Solved: 619[Submit][Status][Discuss] ...
- 使用regsrv32.exe绕过应用程序白名单(多种方法)
0x00 regsvr简介 regsvr32表示Microsoft注册服务.它是Windows的命令行实用工具.虽然regsvr32有时会导致问题出现,但它是Windows系统文件中的一个重要文件.该 ...
- 20135239 益西拉姆 linux内核分析 读书笔记之第四章
chapter 4 进程调度 4.1 多任务 多任务操作系统就是能同时并发的交互执行多个进程的操作系统. 多任务系统可以划分为两类: - 非抢占式多任务: - 进程会一直执行直到自己主动停止运行(这一 ...
- linux内核分析 第七周 Linux内核如何装载和启动一个可执行程序
一.编译链接的过程和ELF可执行文件格式 vi hello.c gcc -E -o hello.cpp hello.c -m32 //预处理.c文件,预处理包括把include的文件包含进来以及宏替换 ...
- loj6070【山东集训第一轮Day4】基因
题解: 分块对每个块的起点$st[i]$到$n$做一次回文自动机; 由于子串的回文自动机是原串的子图,所以并不需要重新构图,在原来的图上做即可: 做的时候记录某个终点的本质不同的回文串和$sum[i] ...
- 音视频处理之FFmpeg+SDL+MFC视频播放器20180411
一.FFmpeg+SDL+MFC视频播放器 1.MFC知识 1).创建MFC工程的方法 打开VC++ 文件->新建->项目->MFC应用程序 应用程序类型->基于对话框 取消勾 ...
- 团体程序设计天梯赛 L1-009. N个数求和
易错题 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdboo ...
- shell 变量定义使用
shell 中变量的几种类型: 1.局部变量:只在当前 shell 可用的变量, 2.环境变量:当前 shell 的子进程也可用的变量 3.shell 变量:一些由 shell 设置的特殊变量,如:$ ...