FFM原理及公式推导
原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun
上一篇讲了FM(Factorization Machines),说一说FFM(Field-aware Factorization Machines )。
回顾一下FM:
$\begin{equation}\hat{y}=w_0+\sum_{i=1}^n{w_ix_i}+\sum_{i=1}^n{\sum_{j=i+1}^n{v_i\cdot v_jx_ix_j}}\label{fm}\end{equation}$ (1)
$\cdot$表示向量的内积。样本$x$是$n$维向量,$x_i$是第$i$个维度上的值。$v_i$是$x_i$对应的长度为$K$的隐向量,$V$是模型参数,所以所有样本都使用同一个$V$,即$x_{1,1}$与$x_{2,1}$都使用$v_1$。
在FFM(Field-aware Factorization Machines )中每一维特征(feature)都归属于一个特定的field,field和feature是一对多的关系。比如
field | field1年龄 | field2城市 | field3性别 | |||
feature | x1年龄 | x2北京 | x3上海 | x4深圳 | x5男 | x6女 |
用户1 | 23 | 1 | 0 | 0 | 1 | 0 |
用户2 | 31 | 0 | 0 | 1 | 0 | 1 |
1. 对于连续特征,一个特征就对应一个Field。或者对连续特征离散化,一个分箱成为一个特征。比如
field | field1年龄 | |||
feature | 小于20 | 20-30 | 30-40 | 大于40 |
用户1 | 0 | 23 | 0 | 0 |
用户2 | 0 | 0 | 31 | 0 |
2. 对于离散特征,采用one-hot编码,同一种属性的归到一个Field
不论是连续特征还是离散特征,它们都有一个共同点:同一个field下只有一个feature的值不是0,其他feature的值都是0。
FFM模型认为$v_i$不仅跟$x_i$有关系,还跟与$x_i$相乘的$x_j$所属的Field有关系,即$v_i$成了一个二维向量$v_{F\times K}$,$F$是Field的总个数。FFM只保留了(1)中的二次项.
$\begin{equation}\hat{y}=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}\label{ffm}\end{equation}$(2)
以上文的表格数据为例,计算用户1的$\hat{y}$
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f3}\cdot v_{3,f1}x_1x_3+v_{1,f4}\cdot v_{4,f1}x_1x_4+\cdots$
由于$x_2,x_3,x_4$属于同一个Field,所以$f2,f3,f4$可以用同一个变量来代替,比如就用$f2$。
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$
我们来算一下$\hat{y}$对$v_{1,f2}$的偏导。
$\hat{y}=v_{1,f2}\cdot v_{2,f1}x_1x_2+v_{1,f2}\cdot v_{3,f1}x_1x_3+v_{1,f2}\cdot v_{4,f1}x_1x_4+\cdots$
等式两边都是长度为$K$的向量。
注意$x_2,x_3,x_4$是同一个属性的one-hot表示,即$x_2,x_3,x_4$中只有一个为1,其他都为0。在本例中$x_3=x_4=0, x_2=1$,所以
$\frac{\partial{\hat{y}}}{\partial{v_{1,f2}}}=v_{2,f1}x_1x_2$
推广到一般情况:
$\begin{equation}\frac{\partial{\hat{y}}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j\label{par}\end{equation}$(3)
$x_j$属于Field$fj$,且同一个Field里面的其他$x_m$都等于0。实际项目中$x$是非常高维的稀疏向量,求导时只关注那些非0项即可。
你一定有个疑问:$v$是模型参数,为了求$v$我们$\cdot$采用梯度下降法时需要计算损失函数对$v$的导数,为什么这里要计算$\hat{y}$对$v$的导数?看看分割线下方的内容你就明白了。
在实际预测点击率的项目中我们是不会直接使用公式(2)的,通常会再套一层sigmoid函数。公式(2)中的y^我们用z来取代。
$z=\phi(v,x)=\sum_{i=1}^n{\sum_{j=i+1}^n{v_{i,fj}\cdot v_{j,fi}x_ix_j}}$
由公式(3)得
$\frac{\partial{z}}{\partial{v_{i,fj}}}=v_{j,fi}x_ix_j$
用$a$表示对点击率的预测值
$a=\sigma(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{-\phi(v,x)}}$
令$y=0$表示负样本,$y=1$表示正样本,$C$表示交叉熵损失函数。根据《神经网络调优》中的公式(1)(2)可得
$\frac{\partial C}{\partial z}=a-y=\left\{\begin{matrix}-\frac{1}{1+e^z} & if\ y是正样本 \\ \frac{1}{1+e^{-z}} & if\ y是负样本\end{matrix}\right .$
$\frac{\partial C}{\partial{v_{i,fj}}}=\frac{\partial C}{\partial z}\frac{\partial{z}}{\partial{v_{i,fj}}}$
看完了本博客再去看论文《Field-aware Factorization Machines for CTR Prediction》中的公式推导应该就比较容易了吧,在该论文中他是以$y=1$代表正样本,$y=−1$代表负样本,所以才有了3.1节中的
$\kappa=\frac{\partial C}{\partial z}=\frac{-y}{1+e^{yz}}$
FFM原理及公式推导的更多相关文章
- XGBoost原理和公式推导
本篇文章主要介绍下Xgboost算法的原理和公式推导.关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google.下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失 ...
- 深入FM和FFM原理与实践
FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过 ...
- 深入理解FFM原理与实践
原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2 ...
- FM/FFM原理
转自https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入FFM原理与实践 del2z, ...
- NDT(Normal Distributions Transform)算法原理与公式推导
正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...
- 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...
- GAN 原理及公式推导
Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做 ...
- 机器学习 | 详解GBDT在分类场景中的应用原理与公式推导
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第31篇文章,我们一起继续来聊聊GBDT模型. 在上一篇文章当中,我们学习了GBDT这个模型在回归问题当中的原理.GBD ...
- 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...
随机推荐
- 最新版本2018.1.1webstorm安装、汉化、破解教程
一.安装(下载与激活) 1.官网下载安装包https://www.jetbrains.com/webstorm/ 2.开始安装 3.选择安装目录,点击下一步 4.勾选64位,点击下一步 5.继续下一步 ...
- SGU---103 最短路变形
题目链接: https://cn.vjudge.net/problem/SGU-103#author=ECUST_FZL 题目大意: Dingiville 城市的交通规则非常奇怪,城市公路通过路口相连 ...
- Android 高级UI设计笔记24:Android 夜间模式之 WebView 实现白天 / 夜间阅读模式 (使用JavaScript)
1. 问题引入: 前面我们是使用方法 降低屏幕亮度(不常用) 和 替换theme,两者都是针对Activity的背景进行白天.夜间模式的交换,但是如果我们显示的是Html的内容,这个时候改怎么办? 分 ...
- jQuery事件处理
浏览器的事件模型 DOM第0级事件模型 Event实例 他的属性提供了关于当前正被处理的已触发事件的大量信息.这包括一些细节,比如在哪个元素上触发的事件.鼠标事件的坐标以及键盘事件中单击了哪个键. 事 ...
- SPOJ-SUBSET Balanced Cow Subsets
嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...
- Python基本知识3----序列
前言: 序列:列表/元组/字符串 3种序列的共同点: 都可以通过索引得到每一个元素 默认索引值从0开始(还支持负数) 都可以通过切片的方式得到范围内的元素的集合 有很多共同的操作符(重复操作符.拼接操 ...
- Redis(一)源码安装
redis 是一款开源的,基于 BSD 许可的,高级键值 (key-value) 缓存 (cache) 和存储 (store) 系统.性能极高,并且支持丰富的数据结构.下面将介绍在ubuntu 14. ...
- 谈谈我的js学习过程(二)——“Hello World!”
在<谈谈我的js学习过程(一)>中,我简单聊了一下我认为的javascript的学习方法,接下来我们可以尝试来写一个最简单的js代码. "Hello World!"对于 ...
- CPP/类/成员函数访问权限
- linux-2.6内核驱动学习——jz2440之按键
//以下是学习完韦东山老师视屏教程后所做学习记录中断方式取得按键值: #include <linux/module.h> #include <linux/kernel.h> ...