Netty源码分析第三章: 客户端接入流程

第二节: 处理接入事件之handle的创建

上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端连接事件的处理

回到上一章NioEventLoop的processSelectedKey ()方法:

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
//获取到channel中的unsafe
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
//如果这个key不是合法的, 说明这个channel可能有问题
if (!k.isValid()) {
//代码省略
}
try {
//如果是合法的, 拿到key的io事件
int readyOps = k.readyOps();
//链接事件
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops);
unsafe.finishConnect();
}
//写事件
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
ch.unsafe().forceFlush();
}
//读事件和接受链接事件
//如果当前NioEventLoop是work线程的话, 这里就是op_read事件
//如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
if (!ch.isOpen()) {
return;
}
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
}

我们看其中的if判断:

if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0)

上一小节我们分析过, 如果当前NioEventLoop是work线程的话, 这里就是op_read事件, 如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件, 这里我们以boss线程为例进行分析

之前我们讲过, 无论处理op_read事件还是op_accept事件, 都走的unsafe的read()方法, 这里unsafe是通过channel拿到, 我们知道如果是处理accept事件, 这里的channel是NioServerSocketChannel, 这里与之绑定的unsafe是NioMessageUnsafe

我们跟到NioMessageUnsafe的read()方法:

public void read() {
//必须是NioEventLoop方法调用的, 不能通过外部线程调用
assert eventLoop().inEventLoop();
//服务端channel的config
final ChannelConfig config = config();
//服务端channel的pipeline
final ChannelPipeline pipeline = pipeline();
//处理服务端接入的速率
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
//设置配置
allocHandle.reset(config);
boolean closed = false;
Throwable exception = null;
try {
try {
do {
//创建jdk底层的channel
//readBuf用于临时承载读到链接
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
}
//分配器将读到的链接进行计数
allocHandle.incMessagesRead(localRead);
//连接数是否超过最大值
} while (allocHandle.continueReading());
} catch (Throwable t) {
exception = t;
}
int size = readBuf.size();
//遍历每一条客户端连接
for (int i = 0; i < size; i ++) {
readPending = false;
//传递事件, 将创建NioSokectChannel进行传递
//最终会调用ServerBootstrap的内部类ServerBootstrapAcceptor的channelRead()方法
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
allocHandle.readComplete();
pipeline.fireChannelReadComplete();
//代码省略
} finally {
//代码省略
}
}

首先获取与NioServerSocketChannel绑定config和pipeline, config我们上一小节进行分析过, pipeline我们将在下一章进行剖析

我们看这一句:

final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();

这里通过RecvByteBufAllocator接口调用了其内部接口Handler

我们看其RecvByteBufAllocator接口:

public interface RecvByteBufAllocator {
Handle newHandle();
interface Handle {
int guess();
void reset(ChannelConfig config);
void incMessagesRead(int numMessages);
void lastBytesRead(int bytes);
int lastBytesRead();
void attemptedBytesRead(int bytes);
int attemptedBytesRead();
boolean continueReading();
void readComplete();
}
}

我们看到RecvByteBufAllocator接口只有一个方法newHandle(), 顾名思义就是用于创建Handle对象的方法, 而Handle中的方法, 才是实际用于操作的方法

在RecvByteBufAllocator实现类中包含Handle的子类, 具体实现关系如下:

3-2-1

回到read()方法中再看这段代码:

final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();

unsafe()返回当前channel绑定的unsafe对象, recvBufAllocHandle()最终会调用AbstractChannel内部类AbstractUnsafe的recvBufAllocHandle()方法

跟进AbstractUnsafe的recvBufAllocHandle()方法:

public RecvByteBufAllocator.Handle recvBufAllocHandle() {
//如果不存在, 则创建一个recvHandle的实例
if (recvHandle == null) {
recvHandle = config().getRecvByteBufAllocator().newHandle();
}
return recvHandle;
}

如果如果是第一次执行到这里, 自身属性recvHandle为空, 会创建一个recvHandle实例, config()返回NioServerSocketChannel绑定的ChannelConfig, getRecvByteBufAllocator()获取其RecvByteBufAllocator对象, 这两部分上一小节剖析过了, 这里通过newHandle()创建一个Handle, 这里会走到AdaptiveRecvByteBufAllocator类中的newHandle()方法中

跟进newHandle()方法中:

public Handle newHandle() {
return new HandleImpl(minIndex, maxIndex, initial);
}

这里创建HandleImpl传入了三个参数, 这三个参数我们上一小节剖析过, minIndex为最小内存在SIZE_TABLE中的下标, maxIndex为最大内存在SEIZE_TABEL中的下标, initial是初始内存, 我们跟到HandleImpl的构造方法中:

public HandleImpl(int minIndex, int maxIndex, int initial) {
this.minIndex = minIndex;
this.maxIndex = maxIndex;
index = getSizeTableIndex(initial);
nextReceiveBufferSize = SIZE_TABLE[index];
}

初始化minIndex和maxIndex, 根据initial找到当前的下标, nextReceiveBufferSize是根据当前的下标找到对应的内存

这样, 我们就创建了个Handle对象

在这里我们需要知道, 这个handle, 是和channel唯一绑定的属性, 而AdaptiveRecvByteBufAllocator对象是和ChannelConfig对象唯一绑定的, 间接也是和channel进行唯一绑定

继续回到read()方法:

public void read() {
//必须是NioEventLoop方法调用的, 不能通过外部线程调用
assert eventLoop().inEventLoop();
//服务端channel的config
final ChannelConfig config = config();
//服务端channel的pipeline
final ChannelPipeline pipeline = pipeline();
//处理服务端接入的速率
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
//设置配置
allocHandle.reset(config);
boolean closed = false;
Throwable exception = null;
try {
try {
do {
//创建jdk底层的channel
//readBuf用于临时承载读到链接
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
}
//分配器将读到的链接进行计数
allocHandle.incMessagesRead(localRead);
//连接数是否超过最大值
} while (allocHandle.continueReading());
} catch (Throwable t) {
exception = t;
}
int size = readBuf.size();
//遍历每一条客户端连接
for (int i = 0; i < size; i ++) {
readPending = false;
//传递事件, 将创建NioSokectChannel进行传递
//最终会调用ServerBootstrap的内部类ServerBootstrapAcceptor的channelRead()方法
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
allocHandle.readComplete();
pipeline.fireChannelReadComplete();
//代码省略
} finally {
//代码省略
}
}

继续往下跟:

allocHandle.reset(config);

这个段代码是重新设置配置, 也就是将之前的配置信息进行初始化, 最终会走到, DefaultMaxMessagesRecvByteBufAllocator中的内部类MaxMessageHandle的reet中

我们跟进reset中:

public void reset(ChannelConfig config) {
this.config = config;
maxMessagePerRead = maxMessagesPerRead();
totalMessages = totalBytesRead = 0;
}

这里仅仅对几个属性做了赋值, 简单介绍下这几个属性:

config:当前channelConfig对象

maxMessagePerRead:表示读取消息的时候可以读取几次(循环次数), maxMessagesPerRead()返回的是RecvByteBufAllocator的maxMessagesPerRead属性, 上一小节已经做过剖析

totalMessages:代表目前读循环已经读取的消息个数, 在NIO传输模式下也就是已经执行的循环次数, 这里初始化为0

totalBytesRead:代表目前已经读取到的消息字节总数, 这里同样也初始化为0

我们继续往下走, 这里首先是一个do-while循环, 循环体里通过int localRead = doReadMessages(readBuf)这种方式将读取到的连接数放入到一个List集合中, 这一步我们下一小节再分析, 我们继续往下走:

我们首先看allocHandle.incMessagesRead(localRead)这一步, 这里的localRead表示这次循环往readBuf中放入的连接数, 在Nio模式下这, 如果读取到一条连接会返回1

跟到中的MaxMessageHandle的incMessagesRead(int amt)方法中:

public final void incMessagesRead(int amt) {
totalMessages += amt;
}

这里将totalMessages增加amt, 也就是+1

这里totalMessage, 刚才已经剖析过, 在NIO传输模式下也就是已经执行的循环次数, 这里每次执行一次循环都会加一

再去看循环终止条件allocHandle.continueReading()

跟到MaxMessageHandle的continueReading()方法中:

public boolean continueReading() {
//config.isAutoRead()默认返回true
// totalMessages < maxMessagePerRead
//totalMessages代表当前读到的链接, 默认是1
//maxMessagePerRead每一次最大读多少链接(默认16)
return config.isAutoRead() &&
attemptedBytesRead == lastBytesRead &&
totalMessages < maxMessagePerRead &&
totalBytesRead < Integer.MAX_VALUE;
}

我们逐个分析判断条件:

config.isAutoRead(): 这里默认为true

attemptedBytesRead == lastBytesRead: 表示本次读取的字节数和最后一次读取的字节数相等, 因为到这里都没有进行字节数组的读取操作, 所以默认都为0, 这里也返回true

totalMessages < maxMessagePerRead: 表示当前读取的次数是否小于最大读取次数, 我们知道totalMessages每次循环都会自增, 而maxMessagePerRead默认值为16, 所以这里会限制循环不能超过16次, 也就是最多一次只能读取16条连接

totalBytesRead < Integer.MAX_VALUE: 表示读取的字节数不能超过int类型的最大值

这里就剖析完了Handle的创建和初始化过程, 并且剖析了循环终止条件等相关的逻辑

上一节: 初始化NioSocketChannelConfig

下一节: NioSocketChannel的创建

Netty源码分析第3章(客户端接入流程)---->第2节: 处理接入事件之handle的创建的更多相关文章

  1. Netty源码分析第3章(客户端接入流程)---->第1节: 初始化NioSockectChannelConfig

    Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带 ...

  2. Netty源码分析第3章(客户端接入流程)---->第3节: NioSocketChannel的创建

    Netty源码分析第三章: 客户端接入流程 第三节: NioSocketChannel的创建 回到上一小节的read()方法: public void read() { //必须是NioEventLo ...

  3. Netty源码分析第3章(客户端接入流程)---->第4节: NioSocketChannel注册到selector

    Netty源码分析第三章: 客户端接入流程 第四节: NioSocketChannel注册到selector 我们回到最初的NioMessageUnsafe的read()方法: public void ...

  4. Netty源码分析第3章(客户端接入流程)---->第5节: 监听读事件

    Netty源码分析第三章: 客户端接入流程 第五节: 监听读事件 我们回到AbstractUnsafe的register0()方法: private void register0(ChannelPro ...

  5. Netty源码分析第4章(pipeline)---->第7节: 前章节内容回顾

    Netty源码分析第四章: pipeline 第七节: 前章节内容回顾 我们在第一章和第三章中, 遗留了很多有关事件传输的相关逻辑, 这里带大家一一回顾 首先看两个问题: 1.在客户端接入的时候, N ...

  6. Netty源码分析第5章(ByteBuf)---->第10节: SocketChannel读取数据过程

    Netty源码分析第五章: ByteBuf 第十节: SocketChannel读取数据过程 我们第三章分析过客户端接入的流程, 这一小节带大家剖析客户端发送数据, Server读取数据的流程: 首先 ...

  7. Netty源码分析第6章(解码器)---->第1节: ByteToMessageDecoder

    Netty源码分析第六章: 解码器 概述: 在我们上一个章节遗留过一个问题, 就是如果Server在读取客户端的数据的时候, 如果一次读取不完整, 就触发channelRead事件, 那么Netty是 ...

  8. Netty源码分析第4章(pipeline)---->第1节: pipeline的创建

    Netty源码分析第四章: pipeline 概述: pipeline, 顾名思义, 就是管道的意思, 在netty中, 事件在pipeline中传输, 用户可以中断事件, 添加自己的事件处理逻辑, ...

  9. Netty源码分析第4章(pipeline)---->第2节: handler的添加

    Netty源码分析第四章: pipeline 第二节: Handler的添加 添加handler, 我们以用户代码为例进行剖析: .childHandler(new ChannelInitialize ...

随机推荐

  1. Golang reflect 反射

    反射的规则如下: 从接口值到反射对象的反射  从反射对象到接口值的反射  为了修改反射对象,其值必须可设置   -------------------------------------------- ...

  2. 「GXOI / GZOI2019」与或和

    题目 广西和贵州的省选?好像很神仙的样子啊 之后发现这是一道水题 我们显然应该拆位考虑 显然我们应该对于每一位都拆一下看看这一位是\(0/1\) 显然我们如果找到一个全是\(1\)的矩阵,那么这一位的 ...

  3. Hadoop学习之路(十五)MapReduce的多Job串联和全局计数器

    MapReduce 多 Job 串联 需求 一个稍复杂点的处理逻辑往往需要多个 MapReduce 程序串联处理,多 job 的串联可以借助 MapReduce 框架的 JobControl 实现 实 ...

  4. Python之Tornadoweb框架使用

    本文主要讲解Tornadoweb框架的安装和介绍及其简单使用. 一. 安装介绍 Tornado是一个Python Web框架和异步网络库,最初是在FriendFeed上开发的.通过使用非阻塞网络I / ...

  5. centos 系统安装基本步骤,面试必考

    1.调整开机媒体,通常为cd或者dvd,也可以是u盘. 2.选择安装模式,是否需要图形化 3.语系及键盘语系选择 4.软件选择 5.磁盘分区操作,主+扩展分区最多4个.逻辑分区在扩展分区下建立 6.时 ...

  6. HDU 2955 变形较大的01背包(有意思,新思路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 Robberies Time Limit: 2000/1000 MS (Java/Others) ...

  7. ASP.NET MVC中Section、Partial View 和 Child Action(转载)

    概括的讲,View中的内容可以分为静态和动态两部分.静态内容一般是html元素,而动态内容指的是在应用程序运行的时候动态创建的内容.给View添加动态内容的方式可归纳为下面几种: Inline cod ...

  8. ios开发UI篇—UIScrollView属性及其代理方法

    一.UIScrollView是什么? 1.UIScrollView是滚动的view,UIView本身不能滚动,子类UIScrollview拓展了滚动方面的功能. 2.UIScrollView是所有滚动 ...

  9. iOS 用KVC设置结构体

    iOS 用KVC设置结构体 在Fundation中KVC提供的键值路径只能访问对象,不能访问结构体.这很不面向对象. 执行下面的语句将会报错: [self setValue:@() forKeyPat ...

  10. PyCharm编辑HTML文件时输入{%不能自动补全

    在PyCharm编辑HTML文件时输入Django模板语言时,发现录入 {% 不能自动补全. 找了一下,发现 setting 里可以设置 Python Template Languages,选择自己使 ...