原文地址:http://www.cnblogs.com/jerrylead/archive/2012/08/13/2636149.html

基于Spark-0.4和Hadoop-0.20.2

1. Kmeans

数据:自己产生的三维数据,分别围绕正方形的8个顶点

{0, 0, 0}, {0, 10, 0}, {0, 0, 10}, {0, 10, 10},

{10, 0, 0}, {10, 0, 10}, {10, 10, 0}, {10, 10, 10}

Point number

189,918,082 (1亿9千万个三维点)

Capacity

10GB

HDFS Location

/user/LijieXu/Kmeans/Square-10GB.txt

程序逻辑:

读取HDFS上的block到内存,每个block转化为RDD,里面包含vector。

然后对RDD进行map操作,抽取每个vector(point)对应的类号,输出(K,V)为(class,(Point,1)),组成新的RDD。

然后再reduce之前,对每个新的RDD进行combine,在RDD内部算出每个class的中心和。使得每个RDD的输出只有最多K个KV对。

最后进行reduce得到新的RDD(内容的Key是class,Value是中心和,再经过map后得到最后的中心。

先上传到HDFS上,然后在Master上运行

root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050 hdfs://master:9000/user/LijieXu/Kmeans/Square-10GB.txt 8 2.0

迭代执行Kmeans算法。

一共160个task。(160 * 64MB = 10GB)

利用了32个CPU cores,18.9GB的内存。

每个机器的内存消耗为4.5GB (共40GB)(本身points数据10GB*2,Map后中间数据(K, V) => (int, (vector, 1)) (大概10GB)

最后结果:

0.505246194 s

Final centers: Map(5 -> (13.997101228817169, 9.208875044622895, -2.494072457488311), 8 -> (-2.33522333047955, 9.128892414676326, 1.7923150585737604), 7 -> (8.658031587043952, 2.162306996983008, 17.670646829079146), 3 -> (11.530154433698268, 0.17834347219956842, 9.224352885937776), 4 -> (12.722903153986868, 8.812883284216143, 0.6564509961064319), 1 -> (6.458644369071984, 11.345681702383024, 7.041924994173552), 6 -> (12.887793408866614, -1.5189406469928937, 9.526393664105957), 2 -> (2.3345459304412164, 2.0173098597285533, 1.4772489989976143))

50MB/s 10GB => 3.5min

10MB/s 10GB => 15min

在20GB的数据上测试

Point number

377,370,313 (3亿7千万个三维点)

Capacity

20GB

HDFS Location

/user/LijieXu/Kmeans/Square-20GB.txt

运行测试命令:

root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050 hdfs://master:9000/user/LijieXu/Kmeans/Square-20GB.txt 8 2.0 | tee mylogs/sqaure-20GB-kmeans.log

得到聚类结果:

Final centers: Map(5 -> (-0.47785701742763115, -1.5901830956323306, -0.18453046159033773), 8 -> (1.1073911553593858, 9.051671594514225, -0.44722211311446924), 7 -> (1.4960397239284795, 10.173412443492643, -1.7932911100570954), 3 -> (-1.4771114031182642, 9.046878176063172, -2.4747981387714444), 4 -> (-0.2796747780312184, 0.06910629855122015, 10.268115903887612), 1 -> (10.467618592186486, -1.168580362309453, -1.0462842137817263), 6 -> (0.7569895433952736, 0.8615441990490469, 9.552726007309518), 2 -> (10.807948500515304, -0.5368803187391366, 0.04258123037074164))

基本就是8个中心点

内存消耗:(每个节点大约5.8GB),共50GB左右。

内存分析:

20GB原始数据,20GB的Map输出

迭代次数

时间

1

108 s

2

0.93 s

12/06/05 11:11:08 INFO spark.CacheTracker: Looking for RDD partition 2:302

12/06/05 11:11:08 INFO spark.CacheTracker: Found partition in cache!

在20GB的数据上测试(迭代更多的次数)

root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050 hdfs://master:900

0/user/LijieXu/Kmeans/Square-20GB.txt 8 0.8

Task数目:320

时间:

迭代次数

时间

1

100.9 s

2

0.93 s

3

4.6 s

4

3.9 s

5

3.9 s

6

3.9 s

迭代轮数对内存容量的影响:

基本没有什么影响,主要内存消耗:20GB的输入数据RDD,20GB的中间数据。

Final centers: Map(5 -> (-4.728089224526789E-5, 3.17334874733142E-5, -2.0605806380414582E-4), 8 -> (1.1841686358289191E-4, 10.000062966002101, 9.999933240005394), 7 -> (9.999976672588097, 10.000199556926772, -2.0695123602840933E-4), 3 -> (-1.3506815993198176E-4, 9.999948270638338, 2.328148782609023E-5), 4 -> (3.2493629851483764E-4, -7.892413981250518E-5, 10.00002515017671), 1 -> (10.00004313126956, 7.431996896171192E-6, 7.590402882208648E-5), 6 -> (9.999982611661382, 10.000144597573051, 10.000037734639696), 2 -> (9.999958673426654, -1.1917651103354863E-4, 9.99990217533504))

结果可视化

2. HdfsTest

测试逻辑:

package spark.examples

import spark._

object HdfsTest {

def main(args: Array[String]) {

val sc = new SparkContext(args(0), "HdfsTest")

val file = sc.textFile(args(1))

val mapped = file.map(s => s.length).cache()

for (iter <- 1 to 10) {

val start = System.currentTimeMillis()

for (x <- mapped) { x + 2 }

// println("Processing: " + x)

val end = System.currentTimeMillis()

println("Iteration " + iter + " took " + (end-start) + " ms")

}

}

}

首先去HDFS上读取一个文本文件保存在file

再次计算file中每行的字符数,保存在内存RDD的mapped中

然后读取mapped中的每一个字符数,将其加2,计算读取+相加的耗时

只有map,没有reduce。

测试10GB的Wiki

实际测试的是RDD的读取性能。

root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050 hdfs://master:9000:/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt

测试结果:

Iteration 1 took 12900 ms = 12s

Iteration 2 took 388 ms

Iteration 3 took 472 ms

Iteration 4 took 490 ms

Iteration 5 took 459 ms

Iteration 6 took 492 ms

Iteration 7 took 480 ms

Iteration 8 took 501 ms

Iteration 9 took 479 ms

Iteration 10 took 432 ms

每个node的内存消耗为2.7GB (共9.4GB * 3)

实际测试的是RDD的读取性能。

root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050 hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt

测试90GB的RandomText数据

root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050 hdfs://master:9000/user/LijieXu/RandomText90GB/RandomText90GB

耗时:

迭代次数

耗时

1

111.905310882 s

2

4.681715228 s

3

4.469296148 s

4

4.441203887 s

5

1.999792125 s

6

2.151376037 s

7

1.889345699 s

8

1.847487668 s

9

1.827241743 s

10

1.747547323 s

内存总消耗30GB左右。

单个节点的资源消耗:

3. 测试WordCount

写程序:

import spark.SparkContext

import SparkContext._

object WordCount {

def main(args: Array[String]) {

if (args.length < 2) {

System.err.println("Usage: wordcount <master> <jar>")

System.exit(1)

}

val sp = new SparkContext(args(0), "wordcount", "/opt/spark", List(args(1)))

val file = sp.textFile("hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt");

val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://master:9000/user/Output/WikiResult3")

}

}

打包成mySpark.jar,上传到Master的/opt/spark/newProgram。

运行程序:

root@master:/opt/spark# ./run -cp newProgram/mySpark.jar WordCount master@master:5050 newProgram/mySpark.jar

Mesos自动将jar拷贝到执行节点,然后执行。

内存消耗:(10GB输入file + 10GB的flatMap + 15GB的Map中间结果(word,1))

还有部分内存不知道分配到哪里了。

耗时:50 sec(未经过排序)

Hadoop WordCount耗时:120 sec到140 sec

结果未排序

单个节点:

Hadoop测试

Kmeans

运行Mahout里的Kmeans

root@master:/opt/mahout-distribution-0.6# bin/mahout org.apache.mahout.clustering.syntheticcontrol.kmeans.Job -Dmapred.reduce.tasks=36 -i /user/LijieXu/Kmeans/Square-20GB.txt -o output -t1 3 -t2 1.5 -cd 0.8 -k 8 -x 6

在运行(320个map,1个reduce)

Canopy Driver running buildClusters over input: output/data

时某个slave的资源消耗情况

Completed Jobs

Jobid

Name

Map Total

Reduce Total

Time

job_201206050916_0029

Input Driver running over input: /user/LijieXu/Kmeans/Square-10GB.txt

160

0

1分2秒

job_201206050916_0030

KMeans Driver running runIteration over clustersIn: output/clusters-0/part-randomSeed

160

1

1分6秒

job_201206050916_0031

KMeans Driver running runIteration over clustersIn: output/clusters-1

160

1

1分7秒

job_201206050916_0032

KMeans Driver running runIteration over clustersIn: output/clusters-2

160

1

1分7秒

job_201206050916_0033

KMeans Driver running runIteration over clustersIn: output/clusters-3

160

1

1分6秒

job_201206050916_0034

KMeans Driver running runIteration over clustersIn: output/clusters-4

160

1

1分6秒

job_201206050916_0035

KMeans Driver running runIteration over clustersIn: output/clusters-5

160

1

1分5秒

job_201206050916_0036

KMeans Driver running clusterData over input: output/data

160

0

55秒

job_201206050916_0037

Input Driver running over input: /user/LijieXu/Kmeans/Square-20GB.txt

320

0

1分31秒

job_201206050916_0038

KMeans Driver running runIteration over clustersIn: output/clusters-0/part-randomSeed

320

36

1分46秒

job_201206050916_0039

KMeans Driver running runIteration over clustersIn: output/clusters-1

320

36

1分46秒

job_201206050916_0040

KMeans Driver running runIteration over clustersIn: output/clusters-2

320

36

1分46秒

job_201206050916_0041

KMeans Driver running runIteration over clustersIn: output/clusters-3

320

36

1分47秒

job_201206050916_0042

KMeans Driver running clusterData over input: output/data

320

0

1分34秒

运行多次10GB、20GB上的Kmeans,资源消耗

Hadoop WordCount测试

Spark交互式运行

进入Master的/opt/spark

运行

MASTER=master@master:5050 ./spark-shell

打开Mesos版本的spark

在master:8080可以看到framework

Active Frameworks

ID

User

Name

Running Tasks

CPUs

MEM

Max Share

Connected

201206050924-0-0018

root

Spark shell

0

0

0.0 MB

0.00

2012-06-06 21:12:56

scala> val file = sc.textFile("hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt")

scala> file.first

scala> val words = file.map(_.split(' ')).filter(_.size < 100) //得到RDD[Array[String]]

scala> words.cache

scala> words.filter(_.contains("Beijing")).count

12/06/06 22:12:33 INFO SparkContext: Job finished in 10.862765819 s

res1: Long = 855

scala> words.filter(_.contains("Beijing")).count

12/06/06 22:12:52 INFO SparkContext: Job finished in 0.71051464 s

res2: Long = 855

scala> words.filter(_.contains("Shanghai")).count

12/06/06 22:13:23 INFO SparkContext: Job finished in 0.667734427 s

res3: Long = 614

scala> words.filter(_.contains("Guangzhou")).count

12/06/06 22:13:42 INFO SparkContext: Job finished in 0.800617719 s

res4: Long = 134

由于GC的问题,不能cache很大的数据集。

【转】Hadoop vs Spark性能对比的更多相关文章

  1. Hadoop vs Spark性能对比

    http://www.cnblogs.com/jerrylead/archive/2012/08/13/2636149.html Hadoop vs Spark性能对比 基于Spark-0.4和Had ...

  2. hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析

    hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析 Spark是一种快速.通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集 ...

  3. PageRank在Hadoop和spark下的实现以及对比

    关于PageRank的地位,不必多说. 主要思想:对于每个网页,用户都有可能点击网页上的某个链接,例如 A:B,C,D B:A,D C:AD:B,C 由这个我们可以得到网页的转移矩阵      A   ...

  4. spark读写hbase性能对比

    一.spark写入hbase hbase client以put方式封装数据,并支持逐条或批量插入.spark中内置saveAsHadoopDataset和saveAsNewAPIHadoopDatas ...

  5. Hadoop和Spark的Shuffer过程对比解析

    Hadoop Shuffer Hadoop 的shuffer主要分为两个阶段:Map.Reduce. Map-Shuffer: 这个阶段发生在map阶段之后,数据写入内存之前,在数据写入内存的过程就已 ...

  6. [Big Data]从Hadoop到Spark的架构实践

    摘要:本文则主要介绍TalkingData在大数据平台建设过程中,逐渐引入Spark,并且以Hadoop YARN和Spark为基础来构建移动大数据平台的过程. 当下,Spark已经在国内得到了广泛的 ...

  7. [转载] 从Hadoop到Spark的架构实践

    转载自http://www.csdn.net/article/2015-06-08/2824889 http://www.zhihu.com/question/26568496 当下,Spark已经在 ...

  8. [Spark性能调优] 第二章:彻底解密Spark的HashShuffle

    本課主題 Shuffle 是分布式系统的天敌 Spark HashShuffle介绍 Spark Consolidated HashShuffle介绍 Shuffle 是如何成为 Spark 性能杀手 ...

  9. 从Hadoop到Spark的架构实践

    当下,Spark已经在国内得到了广泛的认可和支持:2014年,Spark Summit China在北京召开,场面火爆:同年,Spark Meetup在北京.上海.深圳和杭州四个城市举办,其中仅北京就 ...

随机推荐

  1. mysql中要根据某个逗号分割的字符串关联查询另一张表的数据

    首先观察下面的查询 select * from company where f_id in ('210','205','208') select * from company where f_id i ...

  2. java基础-day4

    第04天 java基础语法 今日内容介绍 u Random u 数组 第1章   Random 1.1      产生整数随机数 1.1.1    Random的使用步骤 我们想产生1~100(包含1 ...

  3. Fig723.asy

    import settings; outformat="pdf"; tex="xelatex"; usepackage("amsmath") ...

  4. alpha七天冲刺计划(更新ing)

    alpha七天冲刺计划 第一天: http://note.youdao.com/noteshare?id=ff0c24feec21b1d74a176a0d88815933 第二天: http://no ...

  5. 敏捷项目管理架构(APMF)

    研读许秀影博士的<敏捷项目管理:基础知识与应用实务>一书,其中提到传统项目管理与敏捷项目管理的混合管理模式—敏捷项目管理架构(Agile Project Management Framew ...

  6. NetCore入门篇:(十)Net Core项目使用Cookies

    一.简介 1.Net Core可以直接使用Cookies,但是调用方式有些区别. 2.Net Core将Request和Response分开实现. 二.基本读写Cookies操作 1.写一个基本的读写 ...

  7. 分布式ehcache缓存

    今天在这里了记录一下学习ehcache分布式集群的过程. ehcache的三种最为常用集群方式,分别是 RMI.JGroups 以及 EhCache Server . 这里主要讲一下rmi方式. 1. ...

  8. 网站引入外部js

    有时想看某个网站下一些数据,需要用到js做一个实时的筛选,却又苦于该网站没用jQuery导致想使用jQuery时,还无法下手,那么下面这段js或许可以帮助你.1.打开我们的chrome调试工具,切换到 ...

  9. RF射频技术的原理

    [摘要]射频技术(RF)是Radio Frequency的缩写.较常见的应用有无线射频识别(Radio Frequency Identification,RFID),常称为感应式电子晶片或近接卡.感应 ...

  10. js处理url中的请求参数(编码/解码)

    在处理 a 链接跳转其他页面时,总会遇到需要传递一些当前页面的信息到其他页面,然后其他页面利用这些信息进行相关操作.利用 get 请求或 hash 传递是常见的方式. 首先,需要对传递的参数进行编码, ...