NameNode

学习目标

理解 namenode 的工作机制尤其是元数据管理机制,以增强对 HDFS 工作原理的 理解,及培养 hadoop 集群运营中“性能调优”、“namenode”故障问题的分析解决能力

问题场景

1、Namenode 服务器的磁盘故障导致 namenode 宕机,如何挽救集群及数据?

2、Namenode 是否可以有多个?namenode 内存要配置多大?namenode 跟集群数据存储能 力有关系吗?

3、文件的 blocksize 究竟调大好还是调小好?结合 mapreduce

NameNode的职责

1、负责客户端请求(读写数据  请求 )的响应 
2、维护目录树结构( 元数据的管理: 查询,修改 )
3、配置和应用副本存放策略
4、管理集群数据块负载均衡问题

NameNode元数据的管理

WAL(Write ahead Log): 预写日志系统

  在计算机科学中,预写式日志(Write-ahead logging,缩写 WAL)是关系数据库系统中 用于提供原子性和持久性(ACID 属性中的两个)的一系列技术。在使用 WAL 的系统中,所 有的修改在提交之前都要先写入 log 文件中。

  Log 文件中通常包括 redo 和 undo 信息。这样做的目的可以通过一个例子来说明。假设 一个程序在执行某些操作的过程中机器掉电了。在重新启动时,程序可能需要知道当时执行 的操作是成功了还是部分成功或者是失败了。如果使用了 WAL,程序就可以检查 log 文件, 并对突然掉电时计划执行的操作内容跟实际上执行的操作内容进行比较。在这个比较的基础 上,程序就可以决定是撤销已做的操作还是继续完成已做的操作,或者是保持原样。

  WAL 允许用 in-place 方式更新数据库。另一种用来实现原子更新的方法是 shadow paging, 它并不是 in-place 方式。用 in-place 方式做更新的主要优点是减少索引和块列表的修改。ARIES 是 WAL 系列技术常用的算法。在文件系统中,WAL 通常称为 journaling。PostgreSQL 也是用 WAL 来提供 point-in-time 恢复和数据库复制特性。

  NameNode 对数据的管理采用了两种存储形式:内存和磁盘

  首先是内存中存储了一份完整的元数据,包括目录树结构,以及文件和数据块和副本存储地 的映射关系;

1、内存元数据 metadata(全部存在内存中),其次是在磁盘中也存储了一份完整的元数据。

2、磁盘元数据镜像文件 fsimage_0000000000000000555

fsimage_0000000000000000555 等价于

edits_0000000000000000001-0000000000000000018

……

edits_0000000000000000444-0000000000000000555

合并之和

3、数据历史操作日志文件 edits:edits_0000000000000000001-0000000000000000018 (可通过日志运算出元数据,全部存在磁盘中)

4、数据预写操作日志文件 edits_inprogress_0000000000000000556 (存储在磁盘中)

metadata = 最新 fsimage_0000000000000000555 + edits_inprogress_0000000000000000556

metadata = 所有的 edits 之和(edits_001_002 + …… + edits_444_555 + edits_inprogress_556)

VERSION(存放 hdfs 集群的版本信息)文件解析:

#Sun Jan  :: CST  ## 集群启动时间
namespaceID= ## 文件系统唯一标识符
clusterID=CID-5b7b7321-e43f-456e-bf41-18e77c5e5a40 ## 集群唯一标识符
cTime= ## fsimage 创建的时间,初始为 ,随 layoutVersion 更新
storageType=NAME_NODE ##节点类型
blockpoolID=BP--192.168.123.202- ## 数据块池 ID,可以有多个
layoutVersion=- ## hdfs 持久化数据结构的版本号

查看 edits 文件信息:

hdfs oev -i edits_0000000000000000482- -o edits.xml
cat edits.xml

查看 fsimage 镜像文件信息:

hdfs oiv -i fsimage_0000000000000000348 -p XML -o fsimage.xml
cat fsimage.xml

NameNode 元数据存储机制

A、内存中有一份完整的元数据(内存 metadata)

B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在 namenode 的工作目录中)

C、用于衔接内存 metadata 和持久化元数据镜像 fsimage 之间的操作日志(edits 文件)

(PS:当客户端对 hdfs 中的文件进行新增或者修改操作,操作记录首先被记入 edits 日志 文件中,当客户端操作成功后,相应的元数据会更新到内存 metadata 中)

DataNode

问题场景

1、集群容量不够,怎么扩容?

2、如果有一些 datanode 宕机,该怎么办?

3、datanode 明明已启动,但是集群中的可用 datanode 列表中就是没有,怎么办?

Datanode 工作职责

1、存储管理用户的文件块数据

2、定期向 namenode 汇报自身所持有的 block 信息(通过心跳信息上报)

(PS:这点很重要,因为,当集群中发生某些 block 副本失效时,集群如何恢复 block 初始 副本数量的问题)

<property>
<!—HDFS 集群数据冗余块的自动删除时长,单位 ms,默认一个小时 -->
<name>dfs.blockreport.intervalMsec</name>
<value>3600000</value>
<description>Determines block reporting interval in milliseconds.</description>
</property>

Datanode 掉线判断时限参数

datanode 进程死亡或者网络故障造成 datanode 无法与 namenode 通信,namenode 不会立即 把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS 默认的超时时长 为 10 分钟+30 秒。如果定义超时时间为 timeout,则超时时长的计算公式为: t

imeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval

而默认的 heartbeat.recheck.interval 大小为 5 分钟,dfs.heartbeat.interval 默认为 3 秒。 需要注意的是 hdfs-site.xml 配置文件中的 heartbeat.recheck.interval 的单位为毫秒, dfs.heartbeat.interval 的单位为秒。 所以,举个例子,如果 heartbeat.recheck.interval 设置为 5000(毫秒),dfs.heartbeat.interval 设置为 3(秒,默认),则总的超时时间为 40 秒。

<property>
<name>heartbeat.recheck.interval</name>
<value>5000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>3</value>
</property>

SecondaryNameNode

SecondaryNamenode 工作机制

SecondaryNamenode 的作用就是分担 namenode 的合并元数据的压力。所以在配置 SecondaryNamenode 的工作节点时,一定切记,不要和 namenode 处于同一节点。但事实上, 只有在普通的伪分布式集群和分布式集群中才有会 SecondaryNamenode 这个角色,在 HA 或 者联邦集群中都不再出现该角色。在 HA 和联邦集群中,都是有 standby namenode 承担。

元数据的 CheckPoint

每隔一段时间,会由 secondary namenode 将 namenode 上积累的所有 edits 和一个最新的 fsimage 下载到本地,并加载到内存进行 merge(这个过程称为 checkpoint) CheckPoint 详细过程图解:

CheckPoint 触发配置

dfs.namenode.checkpoint.check.period=60 ##检查触发条件是否满足的频率,60 秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary
##以上两个参数做 checkpoint 操作时,secondary namenode 的本地工作目录
dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}
dfs.namenode.checkpoint.max-retries=3 ##最大重试次数
dfs.namenode.checkpoint.period=3600 ##两次 checkpoint 之间的时间间隔 3600 秒
dfs.namenode.checkpoint.txns=1000000 ##两次 checkpoint 之间最大的操作记录

CheckPoint 附带作用

Namenode 和 SecondaryNamenode 的工作目录存储结构完全相同,所以,当 Namenode 故障 退出需要重新恢复时,可以从SecondaryNamenode的工作目录中将fsimage拷贝到Namenode 的工作目录,以恢复 namenode 的元数据

Hadoop学习之路(十二)分布式集群中HDFS系统的各种角色的更多相关文章

  1. Hadoop(五)分布式集群中HDFS系统的各种角色

    NameNode 学习目标 理解 namenode 的工作机制尤其是元数据管理机制,以增强对 HDFS 工作原理的 理解,及培养 hadoop 集群运营中“性能调优”.“namenode”故障问题的分 ...

  2. Hadoop 学习之路(二)—— 集群资源管理器 YARN

    一.hadoop yarn 简介 Apache YARN (Yet Another Resource Negotiator) 是hadoop 2.0 引入的集群资源管理系统.用户可以将各种服务框架部署 ...

  3. Zookeeper学习之路 (二)集群搭建

    ZooKeeper 软件安装须知 鉴于 ZooKeeper 本身的特点,服务器集群的节点数推荐设置为奇数台.我这里我规划为三台, 为别为 hadoop1,hadoop2,hadoop3 ZooKeep ...

  4. Hadoop学习之路(二十三)MapReduce中的shuffle详解

    概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数 ...

  5. Hadoop学习笔记—13.分布式集群中节点的动态添加与下架

    开篇:在本笔记系列的第一篇中,我们介绍了如何搭建伪分布与分布模式的Hadoop集群.现在,我们来了解一下在一个Hadoop分布式集群中,如何动态(不关机且正在运行的情况下)地添加一个Hadoop节点与 ...

  6. Hadoop学习之路(二)Hadoop发展背景

    Hadoop产生的背景 1. HADOOP最早起源于Nutch.Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取.索引.查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题—— ...

  7. Hadoop学习之路(二)HDFS基础

    1.HDFS前言 HDFS:Hadoop Distributed File System,Hadoop分布式文件系统,主要用来解决海量数据的存储问题. 设计思想 分散均匀存储 dfs.blocksiz ...

  8. Hadoop上路-01_Hadoop2.3.0的分布式集群搭建

    一.配置虚拟机软件 下载地址:https://www.virtualbox.org/wiki/downloads 1.虚拟机软件设定 1)进入全集设定 2)常规设定 2.Linux安装配置 1)名称类 ...

  9. zookeeper学习与实战(二)集群部署

    上一篇介绍了单机版zookeeper安装,这种情况一般用于开发测试.如果是生产环境建议用分布式集群部署,防止单点故障,增加zookeeper服务的高可用. [环境介绍]       三台机器:192. ...

随机推荐

  1. 常见排序算法总结 -- java实现

    常见排序算法总结 -- java实现 排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序. 线性时间 ...

  2. nginx为什么性能这么优越?

    Nginx (“engine x”) 是一个高性能的 HTTP 和 反向代理 服务器 ,也是一个 IMAP/POP3/SMTP 代理 服务器 . Nginx 是由 Igor Sysoev 为俄罗斯访问 ...

  3. JSP学习笔记(4)-Javabean

    按照sun公司的定义,Javabean是一个可重复使用的软件组件,实际上Javabean是一种Java类,通过封装属性和方法成为具有某种功能或处理某个业务的对象,简称Bean,Javabean基于ja ...

  4. Windows下Sqlplus中显示乱码

    set NLS_LANG=SIMPLIFIED CHINESE_CHINA.ZHS16GBK 如果想显示英文 Set nls_lang=american_america.zhs16gbk 注意,前提是 ...

  5. input文字垂直居中和按钮对齐问题,兼容IE8

    1.盒子模型问题:请CSS重置 2.按钮不对齐:请浮动或者vertical-align:middle;然后计算宽高,使其对齐 : 3.IE8文本不居中:line-height属性     注意:IE8 ...

  6. overload与override的区别

    override(重写,覆盖) 1.方法名.参数.返回值相同. 2.子类方法不能缩小父类方法的访问权限. 3.子类方法不能抛出比父类方法更多的异常(但子类方法可以不抛出异常). 4.存在于父类和子类之 ...

  7. js原生实现轮播

    前两天同事面试新人,让现场写”轮播的实现”.我一想这玩意貌似我也没写过啊,就在旁边暗搓搓地拖了一张纸也在那写,同事都纳闷了! 这玩意实现方法有很多种,就看喜欢那种,喜欢怎么写而已.我这里是通过对img ...

  8. Python这个缩进让我焦头烂额!最奇葩的缩进...

        例如如下程序.     运行上面代码,如果输入年龄小于20,将会看到如下运行结果.     从上面代码可以看出,如果输入的年龄大于20,则程序会执行整体缩进的代码块. 再次重复:Python不 ...

  9. Pycharm Html CSS JS 快捷方式创建元素

    div#div1>ol>li.id*4 tab键 <div id="div1"> <ol> <li id="id"&g ...

  10. Oracle数据库日期格式转换操作

    1. 日期转化为字符串 (以2016年10月20日为例) select to_char(sysdate,'yyyy-mm-dd hh24:mi:ss')  strDateTime from dual; ...