Description

  对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积。
  对于两个点集A和B,定义集合的和为:
  A+B={(xiA+xjB,yiA+yjB ):(xiA,yiA )∈A,(xjB,yjB )∈B}
  现在给定一个N个点的集合A和一个M个点的集合B,求2F(A+B)。

Input

 第一行包含用空格隔开的两个整数,分别为N和M;
  第二行包含N个不同的数对,表示A集合中的N个点的坐标;
  第三行包含M个不同的数对,表示B集合中的M个点的坐标。

Output

 一共输出一行一个整数,2F(A+B)。

Sample Input

4 5
0 0 2 1 0 1 2 0
0 0 1 0 0 2 1 2 0 1

Sample Output

18
数据规模和约定
对于30%的数据满足N ≤ 200,M ≤ 200;
对于100%的数据满足N ≤ 10^5,M ≤ 10^5,|xi|, |yi| ≤ 10^8。

正解:$Minkowski$和。

$Minkowski$和,就是题面的这个东西。。

分别求出两个点集的凸包,然后贪心地加点就行。

首先,$A$凸包和$B$凸包的第一个点的和肯定会在最终的凸包里。

然后我们设$A$凸包到了$i$点,$B$凸包到了$j$点。

如果$a[i+1]+b[j]$比$a[i]+b[j+1]$更凸,那么就用$A$凸包更新,否则用$B$凸包更新。

最后求出的这个就是新凸包,直接用叉积算面积就行了。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (500010) using namespace std; struct point{
ll x,y;
il point operator + (const point &a) const{
return (point){x+a.x,y+a.y};
}
il point operator - (const point &a) const{
return (point){x-a.x,y-a.y};
}
}p[N],t1[N],t2[N],st[N]; int n,m,top;
ll S; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il int cmp(const point &a,const point &b){
if (a.x==b.x) return a.y<b.y; return a.x<b.x;
} il ll cross(RG point a,RG point b){ return a.x*b.y-a.y*b.x; } il void graham(point *p,point *t,RG int n){
sort(p+,p+n+,cmp);
for (RG int i=;i<=n;++i){
while (top>= && cross(p[i]-t[top-],t[top]-t[top-])>=) --top;
t[++top]=p[i];
}
for (RG int i=n-,la=top;i>=;--i){
while (top>la && cross(p[i]-t[top-],t[top]-t[top-])>=) --top;
t[++top]=p[i];
}
--top; return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("area.in","r",stdin);
freopen("area.out","w",stdout);
#endif
n=gi(),m=gi();
for (RG int i=;i<=n;++i) p[i].x=gi(),p[i].y=gi(); graham(p,t1,n),n=top,top=;
for (RG int i=;i<=m;++i) p[i].x=gi(),p[i].y=gi(); graham(p,t2,m),m=top,top=;
st[top=]=t1[]+t2[];
for (RG int i=,j=;i<=n || j<=m;){
RG point x=t1[(i-)%n+]+t2[j%m+],y=t1[i%n+]+t2[(j-)%m+];
if (cross(x-st[top],y-st[top])>=) st[++top]=x,++j; else st[++top]=y,++i;
}
for (RG int i=;i<top;++i) S+=cross(st[i]-st[],st[i+]-st[]); cout<<S; return ;
}

bzoj2564 集合的面积的更多相关文章

  1. bzoj2564集合的面积

    题目描述 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ):(xiA ...

  2. bzoj2564: 集合的面积(闵可夫斯基和 凸包)

    题面 传送门 题解 花了一个下午的时间调出了一个稍微能看的板子--没办法网上的板子和咱的不太兼容-- 首先有一个叫做闵可夫斯基和的东西,就是给你两个点集\(A,B\),要你求一个点集\(C=\{x+y ...

  3. BZOJ2564: 集合的面积(闵可夫斯基和 凸包)

    题意 题目链接 Sol 这个东西的学名应该叫"闵可夫斯基和".就是合并两个凸包 首先我们先分别求出给出的两个多边形的凸包.合并的时候直接拿个双指针扫一下,每次选最凸的点就行了. 复 ...

  4. bzoj 2564 集合的面积

    Description 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. UVALive 4794 Sharing Chocolate

    Sharing Chocolate Chocolate in its many forms is enjoyed by millions of people around the world ever ...

  7. [opencv]二维码识别开发流程及问题复盘总结

    项目复盘总结 开发需求: 在桌面机器人(向下俯视)摄像头拍摄到的图像中做条形码识别与二维码识别. 条形码在图像固定位置,二维码做成卡片的形式在固定区域内随意摆放. 开发环境及相关库:ubuntu 18 ...

  8. 计算照片的面积(WPF篇)

    昨天,老周突发其想地给大伙伴们说了一下UWP应用中计算照片面积的玩法,而且老周也表示会提供WPF版本的示例.所以,今天就给大伙们补上吧. WPF是集成在.net框架中,属于.net的一部分,千万不要跟 ...

  9. 计算照片的面积(UWP篇)

    今天先说UWP应用程序上计算照片面积的方法,改天有空,再说说WPF篇. 其实计算照片面积的原理真TMD简单,只要你有本事读到照片的像素高度和宽度,以及水平/垂直方向上的分辨率(DPI)就可以了.计算方 ...

随机推荐

  1. gridview导出数据,如果为0开头,丢失0解决方案

    1.protected void GridView1_RowDataBound( object sender, GridViewRowEventArgs e )  {    if (e.Row.Row ...

  2. 模板(template)包含与继承

    Django 模板查找机制: Django 查找模板的过程是在每个 app 的 templates 文件夹中找(而不只是当前 app 中的代码只在当前的 app 的 templates 文件夹中找). ...

  3. linux centos6.5 网络配置

    1.方法一.修改网络配置文件 ①cd /etc/sysconfig/network-scripts ②cp ifcfg-eth0  ./ifcfg-eth0.bak   //修改前先备份 第一个以太网 ...

  4. wxpython 窗口排版- proportion/flag/border参数说明

    新学习wxpython,一直纠结于窗口控件的排版,经过几天的查资料.试验,总结如下. 1.需求实例 来个实例,窗口有3行控件 第一行是文本提示(大小不变,文字左对齐,控件居左). 第二行依次为文本提示 ...

  5. 阿里云CentOS 7服务器挂载数据盘

    本次使用的是centOS 7.4 64位操作系统 第一步:查看磁盘情况 我们发现,我总共有三个磁盘,分别为/dev/vda(100G)./dev/vdb(200G)./dev/vdc(100G),而被 ...

  6. 清除 Exchange 2013/2016/2019 日志和ETL文件

    Exchange Server  的2个日志目录会增长的很快,需要定时清理,不然C盘的空间很快就会吃光,以下这个powershell脚本就是用于清理目录下面的日志的,已在生产环境中测试过,没问题: S ...

  7. C++中数字与字符串之间的转换(转)

    http://www.cnblogs.com/luxiaoxun/archive/2012/08/03/2621803.html 1.字符串数字之间的转换 (1)string --> char ...

  8. C++浅拷贝和深拷贝的区别

    C++浅拷贝和深拷贝的区别 2012-04-24 21:22 11454人阅读 评论(6) 收藏 举报 c++deleteclass编译器c c++默认的拷贝构造函数是浅拷贝 浅拷贝就是对象的数据成员 ...

  9. PHP设计模式系列 - 装饰器

    什么是装饰器 装饰器模式,对已有对象的部分内容或者功能进行调整,但是不需要修改原始对象结构,可以使用装饰器设 应用场景 设计一个UserInfo类,里面有UserInfo数组,用于存储用户名信息 通过 ...

  10. 【linux】安装和配置 mysql服务器

    按照官网教程,根据自己的系统安装不同的发行版 https://dev.mysql.com/doc/refman/5.6/en/linux-installation-yum-repo.html 配置: ...