原文:https://www.cnblogs.com/daochong/p/6425762.html

一、Kafka数据收集机制

Kafka集群中由producer负责数据的产生,并发送到对应的TopicProducer通过push的方式将数据发送到对应Topic的分区

Producer发送到Topic的数据是有key/value键值对组成的,Kafka根据key的不同的值决定数据发送到不同的Partition,默认采用Hash的机制发送数据到对应Topic的不同Partition中,配置参数为{partitioner.class}

Producer发送数据的方式分为sync(同步)和async(异步)两种,默认为同步方式,由参数{producer.type}决定;当为异步发送模式的时候Producer提供重试机制,默认失败重试发送3次

Kafka Producer相关参数:

二、Kafka数据消费机制

Kafka有两种模式消费数据:队列发布订阅;在队列模式下,一条数据只会发送给customer group中的一个customer进行消费;在发布订阅模式下,一条数据会发送给多个customer进行消费

Kafka的Customer基于offset对kafka中的数据进行消费,对于一个customer group中的所有customer共享一个offset偏移量

Kafka中通过控制Customer的参数{group.id}来决定kafka是什么数据消费模式,如果所有消费者的该参数值是相同的,那么此时的kafka就是类似于队列模式,数据只会发送到一个customer,此时Kafka类似于负载均衡;否则就是发布订阅模式; 在队列模式下,可能会触发Kafka的Consumer Rebalance

Kafka的数据是按照分区进行排序的(插入的顺序),也就是每个分区中的数据是有序的。在Consumer进行数据消费的时候,也是对分区的数据进行有序的消费的,但是不保证所有数据的有序性(多个分区之间)

Consumer Rebalance:当一个consumer group组中的消费者数量和对应Topic的分区数量一致的时候,此时一个Consumer消费一个Partition的数据;如果不一致,那么可能出现一个Consumer消费多个Partition的数据或者不消费数据的情况,这个机制是根据Consumer和Partition的数量动态变化的

Consumer通过poll的方式主动从Kafka集群中获取数据

Kafka Consumer相关参数说明:

=====================================小割割=============================================

传统的消息系统模型主要有两种:消息队列和发布/订阅。

1.消息队列

特性 描述
表现形式 一组消费者从消息队列中获取消息,消息会被推送给组中的某一个消费者
优势 水平扩展,可以将消息数据分开处理
劣势 消息队列不是多用户的,当一条消息记录被一个进程读取后,消息便会丢失

2.发布/订阅

特性 描述
表现形式 消息会广播发送给所有消费者
优势 可以多进程共享消息
劣势 每个消费者都会获得所有消息,无法通过添加消费进程提高处理效率

从上面两个表中可以看出两种传统的消息系统模型的优缺点,所以Kafka在前人的肩膀上进行了优化,吸收他们的优点,主要体现在以下两方面:

  • 通过Topic方式来达到消息队列的功能
  • 通过消费者组这种方式来达到发布/订阅的功能(每条消息只能由消费者组中的一个消费者消费,我的理解是,通过多个消费者组,来达到发布订阅功能,参考这里

Kafka通过结合这两点(这两点的具体描述查看上面章节),完美的解决了它们两者模式的缺点。

=====================================小割割=============================================

每个kafka broker中配置文件server.properties默认必须配置的属性如下:

  1. broker.id=0
  2. num.network.threads=2
  3. num.io.threads=8
  4. socket.send.buffer.bytes=1048576
  5. socket.receive.buffer.bytes=1048576
  6. socket.request.max.bytes=104857600
  7. log.dirs=/tmp/kafka-logs
  8. num.partitions=2
  9. log.retention.hours=168
  10. log.segment.bytes=536870912
  11. log.retention.check.interval.ms=60000
  12. log.cleaner.enable=false
  13. zookeeper.connect=localhost:2181
  14. zookeeper.connection.timeout.ms=1000000

server.properties中所有配置参数说明(解释)如下列表:

参数

说明(解释)

broker.id =0

每一个broker在集群中的唯一表示,要求是正数。当该服务器的IP地址发生改变时,broker.id没有变化,则不会影响consumers的消息情况

log.dirs=/data/kafka-logs

kafka数据的存放地址,多个地址的话用逗号分割/data/kafka-logs-1,/data/kafka-logs-2

port =9092

broker server服务端口

message.max.bytes =6525000

表示消息体的最大大小,单位是字节

num.network.threads =4

broker处理消息的最大线程数,一般情况下不需要去修改

num.io.threads =8

broker处理磁盘IO的线程数,数值应该大于你的硬盘数

background.threads =4

一些后台任务处理的线程数,例如过期消息文件的删除等,一般情况下不需要去做修改

queued.max.requests =500

等待IO线程处理的请求队列最大数,若是等待IO的请求超过这个数值,那么会停止接受外部消息,应该是一种自我保护机制。

host.name

broker的主机地址,若是设置了,那么会绑定到这个地址上,若是没有,会绑定到所有的接口上,并将其中之一发送到ZK,一般不设置

socket.send.buffer.bytes=100*1024

socket的发送缓冲区,socket的调优参数SO_SNDBUFF

socket.receive.buffer.bytes =100*1024

socket的接受缓冲区,socket的调优参数SO_RCVBUFF

socket.request.max.bytes =100*1024*1024

socket请求的最大数值,防止serverOOM,message.max.bytes必然要小于socket.request.max.bytes,会被topic创建时的指定参数覆盖

log.segment.bytes =1024*1024*1024

topic的分区是以一堆segment文件存储的,这个控制每个segment的大小,会被topic创建时的指定参数覆盖

log.roll.hours =24*7

这个参数会在日志segment没有达到log.segment.bytes设置的大小,也会强制新建一个segment会被 topic创建时的指定参数覆盖

log.cleanup.policy = delete

日志清理策略选择有:delete和compact主要针对过期数据的处理,或是日志文件达到限制的额度,会被 topic创建时的指定参数覆盖

log.retention.minutes=3days

数据存储的最大时间超过这个时间会根据log.cleanup.policy设置的策略处理数据,也就是消费端能够多久去消费数据

log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖

log.retention.bytes=-1

topic每个分区的最大文件大小,一个topic的大小限制 =分区数*log.retention.bytes。-1没有大小限log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖

log.retention.check.interval.ms=5minutes

文件大小检查的周期时间,是否处罚 log.cleanup.policy中设置的策略

log.cleaner.enable=false

是否开启日志压缩

log.cleaner.threads = 2

日志压缩运行的线程数

log.cleaner.io.max.bytes.per.second=None

日志压缩时候处理的最大大小

log.cleaner.dedupe.buffer.size=500*1024*1024

日志压缩去重时候的缓存空间,在空间允许的情况下,越大越好

log.cleaner.io.buffer.size=512*1024

日志清理时候用到的IO块大小一般不需要修改

log.cleaner.io.buffer.load.factor =0.9

日志清理中hash表的扩大因子一般不需要修改

log.cleaner.backoff.ms =15000

检查是否处罚日志清理的间隔

log.cleaner.min.cleanable.ratio=0.5

日志清理的频率控制,越大意味着更高效的清理,同时会存在一些空间上的浪费,会被topic创建时的指定参数覆盖

log.cleaner.delete.retention.ms =1day

对于压缩的日志保留的最长时间,也是客户端消费消息的最长时间,同log.retention.minutes的区别在于一个控制未压缩数据,一个控制压缩后的数据。会被topic创建时的指定参数覆盖

log.index.size.max.bytes =10*1024*1024

对于segment日志的索引文件大小限制,会被topic创建时的指定参数覆盖

log.index.interval.bytes =4096

当执行一个fetch操作后,需要一定的空间来扫描最近的offset大小,设置越大,代表扫描速度越快,但是也更好内存,一般情况下不需要搭理这个参数

log.flush.interval.messages=None

log文件”sync”到磁盘之前累积的消息条数,因为磁盘IO操作是一个慢操作,但又是一个”数据可靠性"的必要手段,所以此参数的设置,需要在"数据可靠性"与"性能"之间做必要的权衡.如果此值过大,将会导致每次"fsync"的时间较长(IO阻塞),如果此值过小,将会导致"fsync"的次数较多,这也意味着整体的client请求有一定的延迟.物理server故障,将会导致没有fsync的消息丢失.

log.flush.scheduler.interval.ms =3000

检查是否需要固化到硬盘的时间间隔

log.flush.interval.ms = None

仅仅通过interval来控制消息的磁盘写入时机,是不足的.此参数用于控制"fsync"的时间间隔,如果消息量始终没有达到阀值,但是离上一次磁盘同步的时间间隔达到阀值,也将触发.

log.delete.delay.ms =60000

文件在索引中清除后保留的时间一般不需要去修改

log.flush.offset.checkpoint.interval.ms =60000

控制上次固化硬盘的时间点,以便于数据恢复一般不需要去修改

auto.create.topics.enable =true

是否允许自动创建topic,若是false,就需要通过命令创建topic

default.replication.factor =1

是否允许自动创建topic,若是false,就需要通过命令创建topic

num.partitions =1

每个topic的分区个数,若是在topic创建时候没有指定的话会被topic创建时的指定参数覆盖

以下是kafka中Leader,replicas配置参数

controller.socket.timeout.ms =30000

partition leader与replicas之间通讯时,socket的超时时间

controller.message.queue.size=10

partition leader与replicas数据同步时,消息的队列尺寸

replica.lag.time.max.ms =10000

replicas响应partition leader的最长等待时间,若是超过这个时间,就将replicas列入ISR(in-sync replicas),并认为它是死的,不会再加入管理中

replica.lag.max.messages =4000

如果follower落后与leader太多,将会认为此follower[或者说partition relicas]已经失效

##通常,在follower与leader通讯时,因为网络延迟或者链接断开,总会导致replicas中消息同步滞后

##如果消息之后太多,leader将认为此follower网络延迟较大或者消息吞吐能力有限,将会把此replicas迁移

##到其他follower中.

##在broker数量较少,或者网络不足的环境中,建议提高此值.

replica.socket.timeout.ms=30*1000

follower与leader之间的socket超时时间

replica.socket.receive.buffer.bytes=64*1024

leader复制时候的socket缓存大小

replica.fetch.max.bytes =1024*1024

replicas每次获取数据的最大大小

replica.fetch.wait.max.ms =500

replicas同leader之间通信的最大等待时间,失败了会重试

replica.fetch.min.bytes =1

fetch的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会阻塞,直到满足条件

num.replica.fetchers=1

leader进行复制的线程数,增大这个数值会增加follower的IO

replica.high.watermark.checkpoint.interval.ms =5000

每个replica检查是否将最高水位进行固化的频率

controlled.shutdown.enable =false

是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker

controlled.shutdown.max.retries =3

控制器关闭的尝试次数

controlled.shutdown.retry.backoff.ms =5000

每次关闭尝试的时间间隔

leader.imbalance.per.broker.percentage =10

leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡

leader.imbalance.check.interval.seconds =300

检查leader是否不平衡的时间间隔

offset.metadata.max.bytes

客户端保留offset信息的最大空间大小

kafka中zookeeper参数配置

zookeeper.connect = localhost:2181

zookeeper集群的地址,可以是多个,多个之间用逗号分割hostname1:port1,hostname2:port2,hostname3:port3

zookeeper.session.timeout.ms=6000

ZooKeeper的最大超时时间,就是心跳的间隔,若是没有反映,那么认为已经死了,不易过大

zookeeper.connection.timeout.ms =6000

ZooKeeper的连接超时时间

zookeeper.sync.time.ms =2000

ZooKeeper集群中leader和follower之间的同步实际那

 

Kafka内核理解:消息的收集/消费机制的更多相关文章

  1. [Kafka] - Kafka内核理解:消息的收集/消费机制

    一.Kafka数据收集机制 Kafka集群中由producer负责数据的产生,并发送到对应的Topic:Producer通过push的方式将数据发送到对应Topic的分区 Producer发送到Top ...

  2. [Kafka] - Kafka内核理解:分布式机制

    一个Topic中的所有数据分布式的存储在kafka集群的所有机器(broker)上,以分区(partition)的的形式进行数据存储:每个分区允许存在备份数据/备份分区(存储在同一kafka集群的其它 ...

  3. [Kafka] - Kafka内核理解:消息存储机制

    一个Topic分为多个Partition来进行数据管理,一个Partition中的数据是有序.不可变的,使用偏移量(offset)唯一标识一条数据,是一个long类型的数据 Partition接收到p ...

  4. [Kafka] - Kafka内核理解:Message

    一个Kafka的Message由一个固定长度的header和一个变长的消息体body组成 header部分由一个字节的magic(文件格式)和四个字节的CRC32(用于判断body消息体是否正常)构成 ...

  5. 干货 | Kafka 内核知识梳理,附思维导图

    前面我们已经分享过几篇Kafka的文章,最近简单梳理了下Kafka内核相关的知识,涵盖了Kafka架构总结,副本机制,控制器,高水位机制,日志或消息存储,消息发送与消费机制等方面知识.文末含对应的Ka ...

  6. Kafka分片存储、消息分发和持久化机制

    Kafka 分片存储机制 Broker:消息中间件处理结点,一个 Kafka 节点就是一个 broker,多个 broker 可以组成一个 Kafka集群. Topic:一类消息,例如 page vi ...

  7. Kafka中的消息是否会丢失和重复消费(转)

    在之前的基础上,基本搞清楚了Kafka的机制及如何运用.这里思考一下:Kafka中的消息会不会丢失或重复消费呢?为什么呢? 要确定Kafka的消息是否丢失或重复,从两个方面分析入手:消息发送和消息消费 ...

  8. RabbitMQ消息发布和消费的确认机制

    前言 新公司项目使用的消息队列是RabbitMQ,之前其实没有在实际项目上用过RabbitMQ,所以对它的了解都谈不上入门.趁着周末休息的时间也猛补习了一波,写了两个窗体应用,一个消息发布端和消息消费 ...

  9. 通俗理解Android事件分发与消费机制

    深入:Android Touch事件传递机制全面解析(从WMS到View树) 通俗理解Android事件分发与消费机制 说起Android滑动冲突,是个很常见的场景,比如SliddingMenu与Li ...

随机推荐

  1. Django Redis配合Mysql验证用户登录

    1.redis_check.py # coding:utf-8 import pymysql import redis import sys def con_mysql(sql): db = pymy ...

  2. Python 应用剖析工具介绍

    [编者按]本文作者为来自 HumanGeo 的工程师 Davis,主要介绍了用于 Python 应用性能分析的几个工具.由国内 ITOM 管理平台 OneAPM 编译呈现. 在 HumanGeo,我们 ...

  3. 从Azure上构建Linux应用程序映像

    下图描述了总体的虚拟机的VHD映像生成以及发布到 Azure Azure 镜像市场的全过程: 具体步骤如下: 从Azure管理平台上Linux申请虚拟机, 安装和配置您要发布的应用软件产品,制作成映像 ...

  4. [翻译] UCZProgressView

    UCZProgressView UCZProgressView is a circular progress indicator with cool animations for image load ...

  5. c++ 数组操作(转)

    转自 http://www.cnblogs.com/kykuaileren/archive/2011/09/04/2166646.html 一.数组定义和初始化 1: 一维数组初始化: 2: 标准方式 ...

  6. Django ImportError 模块路径正确,且将文件夹设置为Source Root

    问题描述: 在用PyCharm进行Django项目开发时,由于业务需求需要增加一个外键字段,但在引入外键关联的model时,报错ImportError 解决方案: 无奈中,尝试更改导入模块语句的位置, ...

  7. APP的案例分析

    很多同学有误解,软件项目管理是否就是理论课?或者是几个牛人拼命写代码,其他人打酱油的课?要不然就是学习一个程序语言,搞一个职业培训的课?都不对,软件项目管理有理论,有实践,更重要的是分析,思辨,总结. ...

  8. css背景精华所在+前端页面开发流程

    background属性 background属性是css中应用比较多,且比较重要的一个属性,它是负责给盒子设置背景图片和背景颜色的,background是一个复合属性,它可以分解成如下几个设置项: ...

  9. BZOJ 2424 订货 最小费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2424 题目大意: 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的 ...

  10. 关于右键属性与du -sh显示的文件大小不一致的解决

    du -sh filename(其实我们经常用du -sh *,显示当前目录下所有的文件及其大小,如果要排序再在后面加上 | sort -n)   关于右键属性与du -sh显示的文件大小不一致的解决 ...