前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务。在同事的指引下接触了Celery这个异步任务队列框架,鉴于网上关于Celery和Django结合的文档较少,大部分也只是粗粗介绍了大概的流程,在实践过程中还是遇到了不少坑,希望记录下来帮助有需要的朋友。

一、Django中的异步请求

Django Web中从一个http请求发起,到获得响应返回html页面的流程大致如下:http请求发起 -- http handling(request解析) -- url mapping(url正则匹配找到对应的View) -- 在View中进行逻辑的处理、数据计算(包括调用Model类进行数据库的增删改查)--将数据推送到template,返回对应的template/response。

图1. Django架构总览

同步请求:所有逻辑处理、数据计算任务在View中处理完毕后返回response。在View处理任务时用户处于等待状态,直到页面返回结果。

异步请求:View中先返回response,再在后台处理任务。用户无需等待,可以继续浏览网站。当任务处理完成时,我们可以再告知用户。

二、关于Celery

  Celery是基于Python开发的一个分布式任务队列框架,支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度。

         图2. Celery架构

  图2展示的是Celery的架构,它采用典型的生产者-消费者模式,主要由三部分组成:broker(消息队列)、workers(消费者:处理任务)、backend(存储结果)。实际应用中,用户从Web前端发起一个请求,我们只需要将请求所要处理的任务丢入任务队列broker中,由空闲的worker去处理任务即可,处理的结果会暂存在后台数据库backend中。我们可以在一台机器或多台机器上同时起多个worker进程来实现分布式地并行处理任务。

三、Django中Celery的实现

  在实际使用过程中,发现Celery在Django里的实现与其在一般.py文件中的实现还是有很大差别,Django有其特定的使用Celery的方式。这里着重介绍Celery在Django中的实现方法,简单介绍与其在一般.py文件中实现方式的差别。

  1. 建立消息队列

  首先,我们必须拥有一个broker消息队列用于发送和接收消息。Celery官网给出了多个broker的备选方案:RabbitMQ、Redis、Database(不推荐)以及其他的消息中间件。在官网的强力推荐下,我们就使用RabbitMQ作为我们的消息中间人。在Linux上安装的方式如下:

sudo apt-get install rabbitmq-server

  命令执行成功后,rabbitmq-server就已经安装好并运行在后台了。

  另外也可以通过命令rabbitmq-server -detached来在后台启动rabbitmq server以及命令rabbitmqctl stop来停止server。

  更多的命令可以参考rabbitmq官网的用户手册:https://www.rabbitmq.com/manpages.html

  2. 安装django-celery

pip install celery
pip install django-celery

  3. 配置settings.py

  首先,在Django工程的settings.py文件中加入如下配置代码:

import djcelery
djcelery.setup_loader()
BROKER_URL= 'amqp://guest@localhost//'
CELERY_RESULT_BACKEND = 'amqp://guest@localhost//'

  其中,当djcelery.setup_loader()运行时,Celery便会去查看INSTALLD_APPS下包含的所有app目录中的tasks.py文件,找到标记为task的方法,将它们注册为celery task。BROKER_URL和CELERY_RESULT_BACKEND分别指代你的Broker的代理地址以及Backend(result store)数据存储地址。在Django中如果没有设置backend,会使用其默认的后台数据库用来存储数据。注意,此处backend的设置是通过关键字CELERY_RESULT_BACKEND来配置,与一般的.py文件中实现celery的backend设置方式有所不同。一般的.py中是直接通过设置backend关键字来配置,如下所示:

app = Celery('tasks', backend='amqp://guest@localhost//', broker='amqp://guest@localhost//')

  然后,在INSTALLED_APPS中加入djcelery:

INSTALLED_APPS = (
……
'qv',
'djcelery'
……
)

  4. 在要使用该任务队列的app根目录下(比如qv),建立tasks.py,比如:

  在tasks.py中我们就可以编码实现我们需要执行的任务逻辑,在开始处import task,然后在要执行的任务方法开头用上装饰器@task。需要注意的是,与一般的.py中实现celery不同,tasks.py必须建在各app的根目录下,且不能随意命名。

  5. 生产任务

  在需要执行该任务的View中,通过build_job.delay的方式来创建任务,并送入消息队列。比如:

  6. 启动worker的命令

#先启动服务器
python manage.py runserver
#再启动worker
python manage.py celery worker -c 4 --loglevel=info

四、补充

  Django下要查看其他celery的命令,包括参数配置、启动多worker进程的方式都可以通过python manage.py celery --help来查看:

  另外,Celery提供了一个工具flower,将各个任务的执行情况、各个worker的健康状态进行监控并以可视化的方式展现,如下图所示:

  Django下实现的方式如下: 

  1. 安装flower:

pip install flower

  2. 启动flower(默认会启动一个webserver,端口为5555):

python manage.py celery flower

  3. 进入http://localhost:5555即可查看。

  

    

  

  

异步任务队列Celery在Django中的使用的更多相关文章

  1. Celery在Django中的使用介绍

    Celery在Django中的使用介绍 Celery简介 celery是一个简单.灵活且可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必须工具. 它是一个专注于实时处理的任务队列,同时也 ...

  2. celery在Django中的集成使用

    继上回安装和使用Redis之后,看看如何在Django中使用Celery.Celery是Python开发分布式任务列队的处理库.可以异步分布式地异步处理任务,也可定时执行任务等等.通常我们可以在Dja ...

  3. Python—异步任务队列Celery简单使用

    一.Celery简介 Celery是一个简单,灵活,可靠的分布式系统,用于处理大量消息,同时为操作提供维护此类系统所需的工具.它是一个任务队列,专注于实时处理,同时还支持任务调度. 中间人boker: ...

  4. celery在Django中的应用

    这里不解释celery,如果不清楚可以参考下面链接: http://docs.celeryproject.org/en/latest/getting-started/introduction.html ...

  5. Django 中使用 Celery

    起步 在 <分布式任务队列Celery使用说明> 中介绍了在 Python 中使用 Celery 来实验异步任务和定时任务功能.本文介绍如何在 Django 中使用 Celery. 安装 ...

  6. Django使用Celery异步任务队列

    1  Celery简介 Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行. 任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收 ...

  7. Celery 分布式任务队列快速入门 以及在Django中动态添加定时任务

    Celery 分布式任务队列快速入门 以及在Django中动态添加定时任务 转自 金角大王 http://www.cnblogs.com/alex3714/articles/6351797.html ...

  8. celery 分布式异步任务框架(celery简单使用、celery多任务结构、celery定时任务、celery计划任务、celery在Django项目中使用Python脚本调用Django环境)

    一.celery简介: Celery 是一个强大的 分布式任务队列 的 异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行.我们通常使用它来实现异步任务(async tas ...

  9. Django中Celery http请求异步处理(四)

    Django中Celery http请求异步处理 本章延续celery之前的系列 1.settings配置 2.编写task jib_update_task任务为更新salt jid数据 3.url设 ...

随机推荐

  1. 微信公众号开发之VS远程调试

    目录 (一)微信公众号开发之VS远程调试 (二)微信公众号开发之基础梳理 (三)微信公众号开发之自动消息回复和自定义菜单 前言 微信公众平台消息接口的工作原理大概可以这样理解:从用户端到公众号端一个流 ...

  2. jquery.uploadify文件上传组件

    1.jquery.uploadify简介 在ASP.NET中上传的控件有很多,比如.NET自带的FileUpload,以及SWFUpload,Uploadify等等,尤其后面两个控件的用户体验比较好, ...

  3. Kali对wifi的破解记录

    好记性不如烂笔头,记录一下. 我是在淘宝买的拓实N87,Kali可以识别,还行. 操作系统:Kali 开始吧. 查看一下网卡的接口.命令如下 airmon-ng 可以看出接口名称是wlan0mon. ...

  4. ASP.NET Core 折腾笔记二:自己写个完整的Cache缓存类来支持.NET Core

    背景: 1:.NET Core 已经没System.Web,也木有了HttpRuntime.Cache,因此,该空间下Cache也木有了. 2:.NET Core 有新的Memory Cache提供, ...

  5. 通过ProGet搭建一个内部的Nuget服务器

    .NET Core项目完全使用Nuget 管理组件之间的依赖关系,Nuget已经成为.NET 生态系统中不可或缺的一个组件,从项目角度,将项目中各种组件的引用统统交给NuGet,添加组件/删除组件/以 ...

  6. SQL Server常见数据类型介绍

    数据表是由多个列组成,创建表时必须明确每个列的数据类型,以下列举SQL Server常见数据类型的使用规则,方便查阅. 1.整数类型 int 存储范围是-2,147,483,648到2,147,483 ...

  7. .NET Core采用的全新配置系统[10]: 配置的同步机制是如何实现的?

    配置的同步涉及到两个方面:第一,对原始的配置文件实施监控并在其发生变化之后从新加载配置:第二,配置重新加载之后及时通知应用程序进而使后者能够使用最新的配置.要了解配置同步机制的实现原理,先得从认识一个 ...

  8. 用scikit-learn学习谱聚类

    在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在s ...

  9. Mac OS、Ubuntu 安装及使用 Consul

    Consul 概念(摘录): Consul 是 HashiCorp 公司推出的开源工具,用于实现分布式系统的服务发现与配置.与其他分布式服务注册与发现的方案,比如 Airbnb 的 SmartStac ...

  10. 消息队列性能对比——ActiveMQ、RabbitMQ与ZeroMQ(译文)

    Dissecting Message Queues 概述: 我花了一些时间解剖各种库执行分布式消息.在这个分析中,我看了几个不同的方面,包括API特性,易于部署和维护,以及性能质量..消息队列已经被分 ...