彻底理解数字图像处理中的卷积-以Sobel算子为例
彻底理解数字图像处理中的卷积-以Sobel算子为例
- 作者:FreeBlues
- 修订记录
- 2016.08.04 初稿完成
概述
卷积
在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨论卷积在数字图像处理中的应用.
在数字图像处理中, 有一种基本的处理方法:线性滤波
. 待处理的平面数字图像可被看做一个大矩阵, 图像的每个像素对应着矩阵的每个元素, 假设我们平面的分辨率是 1024*768
, 那么对应的大矩阵的行数
= 1024
, 列数
=768
.
用于滤波的是一个滤波器小矩阵(也叫卷积核
), 滤波器小矩阵一般是个方阵, 也就是 行数
和 列数
相同, 比如常见的用于边缘检测的 Sobel 算子
就是两个 3*3
的小矩阵.
进行滤波就是对于大矩阵中的每个像素, 计算它周围像素和滤波器矩阵对应位置元素的乘积, 然后把结果相加到一起, 最终得到的值就作为该像素的新值, 这样就完成了一次滤波.
上面的处理过程可以参考这个示意图:
图像卷积计算示意图:
对图像大矩阵和滤波小矩阵对应位置元素相乘再求和的操作就叫卷积
(Convolution
)或协相关
(Correlation
).
协相关
(Correlation
)和卷积
(Convolution
)很类似, 两者唯一的差别就是卷积
在计算前需要翻转卷积核
, 而协相关
则不需要翻转.
以 Sobel 算子为例
Sobel 算子
也叫 Sobel 滤波
, 是两个 3*3
的矩阵, 主要用来计算图像中某一点在横向/纵向
上的梯度, 看了不少网络上讲解 Sobel 算子
的文章, 发现人们常常把它的横向梯度矩阵和纵向梯度矩阵混淆. 这可能与 Sobel 算子
在它的两个主要应用场景中的不同用法有关.
Sobel 算子的两个梯度矩阵: Gx 和 Gy
这里以 Wiki
资料为准, Sobel 算子
有两个滤波矩阵: Gx
和 Gy
, Gx
用来计算横向的梯度, Gy
用来计算纵向的梯度, 下图就是具体的滤波器:
- 注意:这里列出的这两个梯度矩阵对应于横向从左到右, 纵向从上到下的坐标轴, 也就是这种:
原点
O -------> x轴
|
|
|
V y轴
Sobel 算子的用途
它可以用来对图像进行边缘检测, 或者用来计算某个像素点的法线向量. 这里需要注意的是:
- 边缘检测时:
Gx
用于检测纵向边缘,Gy
用于检测横向边缘. - 计算法线时:
Gx
用于计算法线的横向偏移,Gy
用于计算法线的纵向偏移.
计算展开
假设待处理图像的某个像素点周围的像素如下:
左上 | 上 | 右上 |
---|---|---|
左 | 中心像素 | 右 |
左下 | 下 | 右下 |
那么用 Gx
计算展开为:
横向新值 = (-1)*[左上] + (-2)*[左] + (-1)*[左下] + 1*[右上] + 2*[右] + 1*[右下]
用 Gy
计算展开为:
纵向新值 = (-1)*[左上] + (-2)*[上] + (-1)*[右] + 1*[左下] + 2*[下] + 1*[右下]
前面说过, 做图像卷积时需要翻转卷积核, 但是我们上面的计算过程没有显式翻转, 这是因为 Sobel 算子
绕中心元素旋转 180
度后跟原来一样. 不过有些 卷积核
翻转后就变了, 下面我们详细说明如何翻转卷积核
.
卷积核翻转
前面说过, 图像卷积
计算, 需要先翻转卷积核
, 也就是绕卷积核
中心旋转 180
度, 也可以分别沿两条对角线翻转两次, 还可以同时翻转行和列, 这3
种处理都可以得到同样的结果.
对于第一种卷积核
翻转方法, 一个简单的演示方法是把卷积核
写在一张纸上, 用笔尖固定住中心元素, 旋转 180
度, 就看到翻转后的卷积核了.
下面演示后两种翻转方法, 示例如下:
假设原始卷积核为:
a | b | c |
---|---|---|
d | e | f |
g | h | i |
方法2:沿两条对角线分别翻转两次
先沿左下角到右上角的对角线翻转, 也就是 a
和i
, b
和f
, d
和h
交换位置, 结果为:
i | f | c |
---|---|---|
h | e | b |
g | d | a |
再沿左上角到右下角的对角线翻转, 最终用于计算的卷积核为:
i | h | g |
---|---|---|
f | e | d |
c | b | a |
方法3:同时翻转行和列
在 Wiki
中对这种翻转的描述:
convolution is the process of flipping both the rows and columns of the kernel and then multiplying locationally similar entries and summing.
也是把卷积核的行列同时翻转, 我们可以先翻转行, 把 a b c
跟 g h i
互换位置, 结果为:
g | h | i |
---|---|---|
d | e | f |
a | b | c |
再翻转列, 把 g d a
和 i f c
互换位置, 结果为:
i | h | g |
---|---|---|
f | e | d |
c | b | a |
在 Wiki
中有一个计算展开式, 也说明了这种翻转:
- 注意:这里要跟矩阵乘法区分开, 这里只是借用了矩阵符号, 实际做的是对应项相乘, 再求和.
图像边缘像素的处理
以上都默认待处理的像素点周围都有像素, 但是实际上图像边缘的像素点周围的像素就不完整, 比如顶部的像素在它上方就没有像素点了, 而图像的四个角的像素点的相邻像素更少, 我们以一个图像矩阵为例:
左上角 | ... | ... | 右上角 | |
---|---|---|---|---|
... | ... | ... | ... | ... |
左侧 | ... | ... | ... | 右侧 |
... | ... | ... | ... | ... |
左下角 | ... | ... | 右下角 |
位于左上角
的像素点的周围就只有右侧和下方有相邻像素, 遇到这种情况, 就需要补全它所缺少的相邻像素, 具体补全方法请参考下一节的代码.
用GPU进行图像卷积
如果在 CPU
上实现图像卷积算法需要进行4
重循环, 效率比较差, 所以我们试着把这些卷积计算放到 GPU
上, 用 shader
实现, 结果发现性能相当好, 而且因为顶点着色器
和片段着色器
本质就是一个循环结构, 我们甚至不需要显式的循环, 代码也清晰了很多.
图像卷积在代码中的实际应用, 下面是一个 GLSL
形式的着色器, 它可以根据纹理贴图生成对应的法线图:
-- 用 sobel 算子生成法线图 generate normal map with sobel operator
genNormal1 = {
vertexShader = [[
attribute vec4 position;
attribute vec4 color;
attribute vec2 texCoord;
varying vec2 vTexCoord;
varying vec4 vColor;
varying vec4 vPosition;
uniform mat4 modelViewProjection;
void main()
{
vColor = color;
vTexCoord = texCoord;
vPosition = position;
gl_Position = modelViewProjection * position;
}
]],
fragmentShader = [[
precision highp float;
varying vec2 vTexCoord;
varying vec4 vColor;
varying vec4 vPosition;
// 纹理贴图
uniform sampler2D tex;
uniform sampler2D texture;
//图像横向长度-宽度, 图像纵向长度-高度
uniform float w;
uniform float h;
float clamp1(float, float);
float intensity(vec4);
float clamp1(float pX, float pMax) {
if (pX > pMax)
return pMax;
else if (pX < 0.0)
return 0.0;
else
return pX;
}
float intensity(vec4 col) {
// 计算像素点的灰度值
return 0.3*col.x + 0.59*col.y + 0.11*col.z;
}
void main() {
// 横向步长-每像素点宽度,纵向步长-每像素点高度
float ws = 1.0/w ;
float hs = 1.0/h ;
float c[10];
vec2 p = vTexCoord;
lowp vec4 col = texture2D( texture, p );
// sobel operator
// position. Gx. Gy
// 1 2 3 |-1. 0. 1.| |-1. -2. -1.|
// 4 5 6 |-2. 0. 2.| | 0. 0. 0.|
// 7 8 9 |-1. 0. 1.| | 1. 2. 1.|
// 右上角,右,右下角
c[3] = intensity(texture2D( texture, vec2(clamp(p.x+ws,0.,w), clamp(p.y+hs,0.,h) )));
c[6] = intensity(texture2D( texture, vec2(clamp1(p.x+ws,w), clamp1(p.y,h))));
c[9] = intensity(texture2D( texture, vec2(clamp1(p.x+ws,w), clamp1(p.y-hs,h))));
// 上, 下
c[2] = intensity(texture2D( texture, vec2(clamp1(p.x,w), clamp1(p.y+hs,h))));
c[8] = intensity(texture2D( texture, vec2(clamp1(p.x,w), clamp1(p.y-hs,h))));
// 左上角, 左, 左下角
c[1] = intensity(texture2D( texture, vec2(clamp1(p.x-ws,w), clamp1(p.y+hs,h))));
c[4] = intensity(texture2D( texture, vec2(clamp1(p.x-ws,w), clamp1(p.y,h))));
c[7] = intensity(texture2D( texture, vec2(clamp1(p.x-ws,w), clamp1(p.y-hs,h))));
// 先进行 sobel 滤波, 再把范围从 [-1,1] 调整到 [0,1]
// 注意: 比较方向要跟坐标轴方向一致, 横向从左到右, 纵向从下到上
float dx = (c[3]+2.*c[6]+c[9]-(c[1]+2.*c[4]+c[7]) + 1.0) / 2.0;
float dy = (c[7]+2.*c[8]+c[9]-(c[1]+2.*c[2]+c[3]) + 1.0) / 2.0;
float dz = (1.0 + 1.0) / 2.0;
gl_FragColor = vec4(vec3(dx,dy,dz), col.a);
}
]]
}
后续有时间的话考虑写一个 APP
来用动画过程模拟图像卷积的计算过程.
参考
图像卷积与滤波的一些知识点
Sobel Derivatives
Wiki:Kernel (image processing)
彻底理解数字图像处理中的卷积-以Sobel算子为例的更多相关文章
- 对于Sobel算子的学习
本来想说很多目前对于 Sobel 算子的认识,但最终还是觉得对于其掌握程度太低,没有一个系统的理解,远不足以写博客,但为了12月不至于零输出,还是决定把自己学习过程中找到的相关资料进行分享. 等到一月 ...
- 初探FFT在数字图像处理中的应用(fft2函数的用法)
初探FFT在数字图像处理中的应用 一般FFT在通信等领域都做的一维变换就能够了.可是在图像处理方面,须要做二维变换,这个时候就须要用到FFT2. 在利用Octave(或者matlab)里面的fft2( ...
- 理解NLP中的卷积神经网络(CNN)
此篇文章是Denny Britz关于CNN在NLP中应用的理解,他本人也曾在Google Brain项目中参与多项关于NLP的项目. · 翻译不周到的地方请大家见谅. 阅读完本文大概需要7分钟左右的时 ...
- 我对sobel算子的理解
转自:http://blog.csdn.net/yanmy2012/article/details/8110316 索贝尔算子(Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分 ...
- EasyPR--开发详解(3)高斯模糊、灰度化和Sobel算子
在上篇文章中我们了解了PlateLocate的过程中的所有步骤.在本篇文章中我们对前3个步骤,分别是高斯模糊.灰度化和Sobel算子进行分析. 一.高斯模糊 1.目标 对图像去噪,为边缘检测算法做准备 ...
- sobel算子
#1,个人理解 网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子.对于我个人来说,还有很多不明白的地方,所以理清下思路. #2, ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...
- 学习 opencv---(11)OpenC 边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器
本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码 ...
随机推荐
- http技术交流提纲
http技术交流提纲地址:http://lazio10000.github.io/tech/http/#/bored
- SVN技术交流提纲
SVN技术交流提纲:http://lazio10000.github.io/tech/SVN/#/bored
- Orchard 刨析:导航篇
之前承诺过针对Orchard Framework写一个系列.本应该在昨天写下这篇导航篇,不过昨天比较累偷懒的去玩了两盘单机游戏哈哈.下面进入正题. 写在前面 面向读者 之前和本文一再以Orchard ...
- 第三十一课:JSDeferred详解2
这一课,我们先接着上一课讲一下wait方法,以及wait方法是如何从静态方法变化实例方法的. 首先我们先看wait方法为啥可以从静态方法变成实例方法,请看register源码: Deferred.re ...
- 并行程序设计模式--Master-Worker模式
简介 Master-Worker模式是常用的并行设计模式.它的核心思想是,系统有两个进程协议工作:Master进程和Worker进程.Master进程负责接收和分配任务,Worker进程负责处理子任务 ...
- java5中原子型操作类的应用
java.util.concurrent.atomic包中提供了对基本数据类型,对数组中的基本数据类型和类中的基本数据类型的操作.详情见API. 下面实例简单介绍AtomicInteger类的使用: ...
- Java-clone浅/深复制
Object中的clone方法为复制当前对象 protected native Object clone() throws CloneNotSupportedException; 想要使用这个方法需要 ...
- 【HDU 1445】Ride to School
题 题意 骑自行车,等0时开始最早出发的人,一起出发,然后被别人超过时,就追上去,终点距离是4.5km,速度单位是km/s,求到达的时间(s). 分析 贪心,找0时开始最早到的即可. 代码 #incl ...
- 【Aizu 2305】Beautiful Currency
题 题意 给你n个货币价格,然后通过调整一些货币的大小,使得所有比自己小的货币都是该货币的约数,调整前第 i 货币为a,调整后为b 那么变化率为 ri=|a-b|/a ,总变化率为max(ri).求最 ...
- 判断一个数据是否存在于一个表中,Oracle中写自定义函数
create or replace function isExist(data in DataTypes) --DataTypes 为表中该数据的类型return Numberisv_flag num ...