Antenna Placement
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6991   Accepted: 3466

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

Source

无向二分图的最小路径覆盖 = 顶点数 – 最大二分匹配数/2 ;
详情,点这里
 #include<stdio.h>
#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
bool map[][] ;
int vis[][] ;
int a[][] ;
int girl [] ;
bool sta[] ;
int cnt ;
int row , col ;
char st[] ;
int move[][] = { , , , , - , , , -} ; bool hungary (int x)
{
for (int i = ; i <= cnt ; i++) {
if (map[x][i] && sta[i] == false) {
sta[i] = true ;
if (girl[i] == || hungary (girl[i])) {
girl[i] = x ;
return true ;
}
}
}
return false ;
} int main ()
{
// freopen ("a.txt" , "r" , stdin) ;
int T ;
cin >> T ;
while (T--) {
scanf ("%d%d" , &row , &col) ;
getchar () ;
cnt = ;
memset (vis , - , sizeof(vis)) ;
memset (map , , sizeof(map)) ;
memset (a , - , sizeof(a)) ;
memset (girl , , sizeof(girl)) ;
for (int i = ; i < row ; i++) {
gets (st) ;
for (int j = ; j < col ; j++) {
if (st[j] == '*') {
a[i + ][j + ] = + cnt++;
}
}
}
/* for (int i = 1 ; i <= row ; i++) {
for (int j = 1 ; j <= col ; j++) {
printf ("%d " , a[i][j]);
}
puts ("") ;
}*/
for (int i = ; i <= row ; i++) {
for (int j = ; j <= col ; j++) {
if (a[i][j] != -) {
for (int k = ; k < ; k++) {
int x = i + move[k][] ;
int y = j + move[k][] ;
if (a[x] [y] != -)
map[ a[i][j] ] [ a[x][y] ] = ;
}
}
}
}
/* for (int i = 1 ; i <= cnt ; i++) {
for (int j = 1 ; j <= cnt ; j++) {
printf ("%d " , map[i][j]) ;
}
puts ("") ;
}*/
int all = ;
for (int i = ; i <= cnt ; i++) {
memset (sta , , sizeof(sta)) ;
if (hungary (i))
all ++ ;
}
// printf ("cnt = %d , all = %d\n" , cnt , all) ;
printf ("%d\n" , cnt - all / ) ;
}
return ;
}

Antenna Placement(匈牙利算法 ,最少路径覆盖)的更多相关文章

  1. poj3020 Antenna Placement 匈牙利算法求最小覆盖=最大匹配数(自身对应自身情况下要对半) 小圈圈圈点

    /** 题目:poj3020 Antenna Placement 链接:http://poj.org/problem?id=3020 题意: 给一个由'*'或者'o'组成的n*m大小的图,你可以用一个 ...

  2. POJ 3020 Antenna Placement 匈牙利算法,最大流解法 难度:1

    http://poj.org/problem?id=3020 #include <cstdio> #include <cstring> #include <vector& ...

  3. HDU 6311 最少路径覆盖边集 欧拉路径

    Cover Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  4. poj 1422 Air Raid 最少路径覆盖

    题目链接:http://poj.org/problem?id=1422 Consider a town where all the streets are one-way and each stree ...

  5. poj3041 Asteroids 匈牙利算法 最小点集覆盖问题=二分图最大匹配

    /** 题目:poj3041 Asteroids 链接:http://poj.org/problem?id=3041 题意:给定n*n的矩阵,'X'表示障碍物,'.'表示空格;你有一把枪,每一发子弹可 ...

  6. 匈牙利算法实战codevs1022覆盖

    1022 覆盖    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Description 有一个N×M的单位方格中 ...

  7. POJ-3020 Antenna Placement---二分图匹配&最小路径覆盖&建图

    题目链接: https://vjudge.net/problem/POJ-3020 题目大意: 一个n*m的方阵 一个雷达可覆盖两个*,一个*可与四周的一个*被覆盖,一个*可被多个雷达覆盖问至少需要多 ...

  8. HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)

    题意 给个无向图,无重边和自环,问最少需要多少路径把边覆盖了.并输出相应路径 分析 首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是  max(1,度数为奇数点的个数/2).然后就是求欧拉路 ...

  9. Antenna Placement POJ - 3020 二分图匹配 匈牙利 拆点建图 最小路径覆盖

    题意:图没什么用  给出一个地图 地图上有 点 一次可以覆盖2个连续 的点( 左右 或者 上下表示连续)问最少几条边可以使得每个点都被覆盖 最小路径覆盖       最小路径覆盖=|G|-最大匹配数 ...

随机推荐

  1. Xilinx命名规则

    xilinx公司的FPGA种类繁多,知道了命名规则,看起来应该会舒服很多. 1.xilinx的FPGA命名规则 Xilinx的ug112第一章中介绍了Xilinx公司的FPGA命名规则.一般而言,大的 ...

  2. 你所不知道的Python奇技淫巧

    有时候你会看到很Cool的Python代码,你惊讶于它的简洁,它的优雅,你不由自主地赞叹:竟然还能这样写.其实,这些优雅的代码都要归功于Python的特性,只要你能掌握这些Pythonic的技巧,你一 ...

  3. 微信第一个“小程序”亮相:不是APP胜似APP!

    前天晚上,微信终于推出了“小程序”功能.看过效果演示之后,网友表示,好多App可以卸载了! 据了解,微信“小程序”已首批开放给200名拥有微信服务号的开发者进行内测,而且目前开发者发布的小程序无法在用 ...

  4. Bootstrap系列 -- 22. 按钮详解

    Bootstrap框架首先通过基础类名“.btn”定义了一个基础的按钮风格,然后通过“.btn-default”定义了一个默认的按钮风格.默认按钮的风格就是在基础按钮的风格的基础上修改了按钮的背景颜色 ...

  5. Cordova4.0 系列 -- 常用命令(2)

    一. 创建一个cordova工程 create <directory> [<id> [<name>]] 二. 列出该工程支持哪些平台 platform [ls | ...

  6. [设计模式] javascript 之 代理模式

    代理模式说明 说明:顾名思义就是用一个类来代替另一个类来执行方法功能,这个模式跟装饰模式有点相似,不一样的是,代理模式是代替客户初始化被代理对象类,而装饰模式采用接口或初装饰者参数引用的方式来执行的. ...

  7. Xcode的版本功能特点简要回顾

    在开始学IOS的开发时,本来是打算在windows环境下安装黑苹果的.也进行了百度和尝试,几番折腾之后,终于进入了系统界面,然而,就是然而,只有一个界面什么也动不了,后来就放弃了,咬咬牙入手了一台ma ...

  8. SpringMVC实战

    一.SpringMVC基础入门,创建一个HelloWorld程序 1.首先,导入SpringMVC需要的jar包. 2.添加Web.xml配置文件中关于SpringMVC的配置 1 2 3 4 5 6 ...

  9. 【ZOJ 3870】 Team Formation

    题意 n个数,找出有几对a.b 符合 a ^ b > max(a,b) .^表示异或号 分析 对于数a,如果它的二进制是: 1 0 1  0 0 1,那么和它 ^ 后 能比他大的数就是: 0 1 ...

  10. Oracle使用JDBC进行增删改查

    数据库和表 create table USERS(  USERNAME VARCHAR2(20) not null,  PASSWORD VARCHAR2(20))alter table USERS  ...