描述

小T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi 。检验矿产的流程是: 
1 、给定m 个区间[Li ,Ri]; 
2 、选出一个参数 W; 
3 、对于一个区间[Li ,Ri],计算矿石在这个区间上的检验值Yi:
Yi=Σ1*Σvj,Σ的循环变量为j,这里j要满足j∈[Li,Ri]且wj≥W,这里j是矿石编号。

这批矿产的检验结果Y为各个区间的检验值之和。ΣYi,Σ的循环变量为i,1≤i≤m。

若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产。小T不想费时间去检验另一批矿产,所以他想通过调整参数W 的值,让检验结果尽可能的靠近标准值S,即使得S-Y 的绝对值最小。请你帮忙求出这个最小值。

输入格式

第一行包含三个整数n ,m,S,分别表示矿石的个数、区间的个数和标准值。 接下来的n 行,每行 2 个整数,中间用空格隔开,第i+1 行表示 i 号矿石的重量 wi 和价值vi 。 
接下来的m 行,表示区间,每行2 个整数,中间用空格隔开,第i+n+1 行表示区间[Li, Ri]的两个端点 Li 和Ri 。注意:不同区间可能重合或相互重叠。 

输出格式

输出只有一行,包含一个整数,表示所求的最小值。 

测试样例1

输入

5 3 15 
1 5 
2 5 
3 5 
4 5 
5 5 
1 5 
2 4 
3 3

输出

10

对样例的解释 
当W 选4 的时候,三个区间上检验值分别为 20、5 、0 ,这批矿产的检验结果为 25,此时与标准值S 相差最小为10。

备注

对于10% 的数据,有 1 ≤n ,m≤10; 
对于30% 的数据,有 1 ≤n ,m≤500 ; 
对于50% 的数据,有 1 ≤n ,m≤5,000; 
对于70% 的数据,有 1 ≤n ,m≤10,000 ; 
对于100%的数据,有 1 ≤n ,m≤200,000,0 < wi, vi≤10^6,0 < S≤10^12,1 ≤Li ≤Ri ≤n 。 
 
注意区间的处理,每次检查都要再算一遍前缀和
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = ;
struct STONE{
long long w;
long long v;
};
long long n,m,s,l[maxn],r[maxn],sum[maxn],sumv[maxn],all,ans = 98765432112345L;
STONE stone[maxn];
void input(){
cin>>n>>m>>s;
all = ;
for(int i = ;i <= n;i++){
scanf("%lld%lld",&stone[i].w,&stone[i].v);
if(all < stone[i].w) all = stone[i].w;
}
for(int i = ;i <= m;i++){
scanf("%lld%lld",&l[i],&r[i]);
}
}
bool check(long long t){
sum[] = sumv[] = ;
for(int i = ;i <= n;i++){
if(stone[i].w >= t){
sumv[i] = sumv[i-] + stone[i].v;
sum[i] = sum[i-] + ;
}else{
sumv[i] = sumv[i-];
sum[i] = sum[i-];
}
}
all = ;
for(int i = ;i <= m;i++){
all += (sumv[r[i]] - sumv[l[i]-]) * (sum[r[i]] - sum[l[i]-]);
}
ans = min(abs(all - s),ans);
return all < s;
}
void div(){
long long lans = ,rans = all,mans;
while(lans <= rans){
mans = (lans + rans) >> ;
if(check(mans)){
rans = mans - ;
}else{
lans = mans + ;
}
}
check(mans+);
if(mans > )check(mans-);
cout<<ans;
}
int main(){
input();
div();
return ;
}

NOIP2011 聪明的质监员的更多相关文章

  1. NOIP2011聪明的质监员题解

    631. [NOIP2011] 聪明的质监员 ★★   输入文件:qc.in   输出文件:qc.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小 T 是一名质量监督 ...

  2. NC16597 [NOIP2011]聪明的质监员

    NC16597 [NOIP2011]聪明的质监员 题目 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 \(n\) 个矿石,从 \(1\) 到 \(n\) 逐一编号,每个矿 ...

  3. 【洛谷P1314】[NOIP2011]聪明的质监员

    聪明的质监员 题目链接:https://www.luogu.org/problemnew/show/P1314 Y(W)随W的值增大而减小 二分W的值,找到最小的W使得Y(W)>S: 比较Y(W ...

  4. [NOIP2011]聪明的质监员 题解

    题目大意: 额--貌似蛮清晰的,就不赘述了. 思路: 首先不难发现M越大Y越小,因此可以二分答案(方向不要弄错),二分出最小的不小于S的Y即可.而计算Y时可用前缀和O(n+m)求得.两种边界情况也要考 ...

  5. [NOIP2011] 聪明的质监员 二分+前缀和

    考试的时候打的二分但没有用前缀和维护.但是有个小细节手误打错了结果挂掉了. 绝对值的话可能会想到三分,但是注意到w增大的时候y是减小的,所以单调性很明显,用二分就可以.但注意一个问题,就是二分最后的结 ...

  6. Luogu 1314 [NOIP2011] 聪明的质监员

    二分答案 + 前缀和. 题面中式子的意思是每一个区间$[l, r]$的贡献是这个区间内$w_i \geq W$的个数乘以这些$i$的$v_i$和. 很快发现了答案具有单调性,可以做两遍二分,分别看看小 ...

  7. 题解【洛谷P1314】[NOIP2011]聪明的质监员

    题面 题解 不难发现,\(W\)增大时,\(Y\)值会随之减小. 于是考虑二分\(W\). 如何\(\mathcal{O}(N)check?\) 每一次前缀和记录一下\(1-i\)之间\(w_i \g ...

  8. Luogu P1314 [NOIP2011 提高组] 聪明的质监员

    P1314 [NOIP2011 提高组] 聪明的质监员 题意 题目描述 给定\(n\)个物品,给定每个物品的 重量 \(w_i\) 和 价值 \(v_i\) 给定一个标准值 \(s\) 以及一个参数 ...

  9. NOIP2011提高组 聪明的质监员 -SilverN

    题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[L ...

随机推荐

  1. 利用JS跨域做一个简单的页面访问统计系统

    其实在大部分互联网web产品中,我们通常会用百度统计或者谷歌统计分析系统,通过在程序中引入特定的JS脚本,然后便可以在这些统计系统中看到自己网站页面具体的访问情况.但是有些时候,由于一些特殊情况,我们 ...

  2. maven编译设置pom.xml

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  3. 原生JS、CSS实现的转盘效果(目前仅支持webkit)

    这是一个原生JS.CSS实现的转盘效果(题目在这:http://www.cnblogs.com/arfeizhang/p/turntable.html),花了半个小时左右,准备睡觉,所以先贴一段代码, ...

  4. maven integration with eclipse 3.0.4 does not work with NTLM proxy

    Recently downloaded m2e(maven integration with eclipse). The version is 3.0.4. My environment is beh ...

  5. (旧)子数涵数·PS——冷色调与LOMO

    一.准备素材(我是从百度图库里下载的) 二.打开PS和素材 三.复制图层,快捷键Ctrl+J,并把原图层隐藏,只在副本上编辑(好习惯) 四.使用"匹配颜色"命令,增加"明 ...

  6. [wikioi 1519]过路费(最小生成树+树链剖分)

    题目:http://www.wikioi.com/problem/1519/ 题意:给你一个连通的无向图,每条边都有权值,给你若干个询问(x,y),要输出从x到y的路径上边的最大值的最小值 分析:首先 ...

  7. 史上最全的HTML、CSS知识点总结,浅显易懂。

    来源于:http://blog.csdn.net/qiushi_1990/article/details/40260447 一,html+css基础1-1Html和CSS的关系学习web前端开发基础技 ...

  8. iOS边练边学--级联菜单的两种实现方法

    一.方法1:如图,图中的两个tableView分别交给两个控制器来管理 重点难点:categoryTableView被点击之后,subcategoryTableView要取得相应的数据进行刷新,所以s ...

  9. jquery 在 table 中修改某行值

    修改 table 中某行的的方法步骤如下: 1.选择要修改的行,事件触发,比如我的 双击某行时修改 2.将要修改的行,替换为input,原先的列中的值,需要放到对应的input中作为默认值 3.修改完 ...

  10. Hibernate-Criteria用法

    criteria 英[kraɪˈtɪərɪə] 美[kraɪˈtɪrɪə] Hibernate 设计了 CriteriaSpecification Hibernate 设计了 CriteriaSpec ...