浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容:
- StOMP的算法流程
- StOMP的MATLAB实现
- 一维信号的实验与结果
- 门限参数Ts、测量数M与重构成功概率关系的实验与结果
一、StOMP的算法流程
分段正交匹配追踪(Stagewise OMP)也是由OMP改进而来的一种贪心算法,与CoSaMP、SP算法类似,不同之处在于CoSaMP、SP算法在迭代过程中选择的是与信号内积最大的2K或K个原子,而StOMP是通过门限阈值来确定原子。此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的优势(这句话存在疑问)。
StOMP的算法流程:
二、StOMP的MATLAB实现(CS_StOMP.m)
function [ theta ] = CS_StOMP( y,A,S,ts )
% CS_StOMP
% Detailed explanation goes here
% y = Phi * x
% x = Psi * theta
% y = Phi*Psi * theta
% 令 A = Phi*Psi, 则y=A*theta
% S is the maximum number of StOMP iterations to perform
% ts is the threshold parameter
% 现在已知y和A,求theta
% Reference:Donoho D L,Tsaig Y,Drori I,Starck J L.Sparse solution of
% underdetermined linear equations by stagewise orthogonal matching
% pursuit[J].IEEE Transactions on Information Theory,,():—
if nargin <
ts = 2.5; %ts范围[,],默认值为2.
end
if nargin <
S = ; %S默认值为10
end
[y_rows,y_columns] = size(y);
if y_rows<y_columns
y = y'; %y should be a column vector
end
[M,N] = size(A); %传感矩阵A为M*N矩阵
theta = zeros(N,); %用来存储恢复的theta(列向量)
pos_num = []; %用来迭代过程中存储A被选择的列序号
res = y; %初始化残差(residual)为y
for ss=:S %最多迭代S次
product = A'*res; %传感矩阵A各列与残差的内积
sigma = norm(res)/sqrt(M); %参见参考文献第3页Remarks()
Js = find(abs(product)>ts*sigma); %选出大于阈值的列
Is = union(pos_num,Js); %pos_num与Js并集
if length(pos_num) == length(Is)
if ss==
theta_ls = ; %防止第1次就跳出导致theta_ls无定义
end
break; %如果没有新的列被选中则跳出循环
end
%At的行数要大于列数,此为最小二乘的基础(列线性无关)
if length(Is)<=M
pos_num = Is; %更新列序号集合
At = A(:,pos_num); %将A的这几列组成矩阵At
else %At的列数大于行数,列必为线性相关的,At'*At将不可逆
if ss==
theta_ls = ; %防止第1次就跳出导致theta_ls无定义
end
break; %跳出for循环
end
%y=At*theta,以下求theta的最小二乘解(Least Square)
theta_ls = (At'*At)^(-1)*At'*y; %最小二乘解
%At*theta_ls是y在At列空间上的正交投影
res = y - At*theta_ls; %更新残差
if norm(res)<1e- %Repeat the steps until r=
break; %跳出for循环
end
end
theta(pos_num)=theta_ls; %恢复出的theta
end
三、一维信号的实验与结果
%压缩感知重构算法测试
clear all;close all;clc;
M = ; %观测值个数
N = ; %信号x的长度
K = ; %信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,);
x(Index_K(:K)) = *randn(K,); %x为K稀疏的,且位置是随机的
Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N)/sqrt(M); %测量矩阵为高斯矩阵
A = Phi * Psi; %传感矩阵
y = Phi * x; %得到观测向量y %% 恢复重构信号x
tic
theta = CS_StOMP(y,A);
x_r = Psi * theta; % x=Psi * theta
toc %% 绘图
figure;
plot(x_r,'k.-'); %绘出x的恢复信号
hold on;
plot(x,'r'); %绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('\n恢复残差:');
norm(x_r-x) %恢复残差
四、门限参数ts、测量数M与重构成功概率关系的实验与结果
clear all;close all;clc; %% 参数配置初始化
CNT = ;%对于每组(K,M,N),重复迭代次数
N = ;%信号x的长度
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
ts_set = :0.2:;
K_set = [,,,,];%信号x的稀疏度集合
Percentage = zeros(N,length(K_set),length(ts_set));%存储恢复成功概率 %% 主循环,遍历每组(ts,K,M,N)
tic
for tt = :length(ts_set)
ts = ts_set(tt);
for kk = :length(K_set)
K = K_set(kk);%本次稀疏度
%M没必要全部遍历,每隔5测试一个就可以了
M_set=*K::N;
PercentageK = zeros(,length(M_set));%存储此稀疏度K下不同M的恢复成功概率
for mm = :length(M_set)
M = M_set(mm);%本次观测值个数
fprintf('ts=%f,K=%d,M=%d\n',ts,K,M);
P = ;
for cnt = :CNT %每个观测值个数均运行CNT次
Index_K = randperm(N);
x = zeros(N,);
x(Index_K(:K)) = *randn(K,);%x为K稀疏的,且位置是随机的
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
theta = CS_StOMP(y,A,,ts);%恢复重构信号theta
x_r = Psi * theta;% x=Psi * theta
if norm(x_r-x)<1e-%如果残差小于1e-6则认为恢复成功
P = P + ;
end
end
PercentageK(mm) = P/CNT*;%计算恢复概率
end
Percentage(:length(M_set),kk,tt) = PercentageK;
end
end
toc
save StOMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来 %% 绘图
for tt = :length(ts_set)
S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
figure;
for kk = :length(K_set)
K = K_set(kk);
M_set=*K::N;
L_Mset = length(M_set);
plot(M_set,Percentage(:L_Mset,kk,tt),S(kk,:));%绘出x的恢复信号
hold on;
end
hold off;
xlim([ ]);
legend('K=4','K=12','K=20','K=28','K=36');
xlabel('Number of measurements(M)');
ylabel('Percentage recovered');
title(['Percentage of input signals recovered correctly(N=256,ts=',...
num2str(ts_set(tt)),')(Gaussian)']);
end
for kk = :length(K_set)
K = K_set(kk);
M_set=*K::N;
L_Mset = length(M_set);
S = ['-ks';'-ko';'-kd';'-kv';'-k*';'-k+'];
figure;
for tt = :length(ts_set)
plot(M_set,Percentage(:L_Mset,kk,tt),S(tt,:));%绘出x的恢复信号
hold on;
end
hold off;
xlim([ ]);
legend('ts=2.0','ts=2.2','ts=2.4','ts=2.6','ts=2.8','ts=3.0');
xlabel('Number of measurements(M)');
ylabel('Percentage recovered');
title(['Percentage of input signals recovered correctly(N=256,K=',...
num2str(K),')(Gaussian)']);
end
1、门限参数ts分别为2.0,2.2,2.4,2.6,2.8,3.0时,不同稀疏信号下,测量值M与重构成功概率的关系:
2、稀疏度为4,12,20,28,36时,不同门限参数ts下,测量值M与重构成功概率的关系:
结论:
通过对比可以看出,总体上讲ts=2.4或ts=2.6时效果较好,较大和较小重构效果都会降低,这里由于没有ts=2.5的情况,但我们推测ts=2.5应该是一个比较好的值,因此一般默认取为2.5即可。
六、参考文章
http://blog.csdn.net/jbb0523/article/details/45441601
浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)的更多相关文章
- [转]压缩感知重构算法之分段正交匹配追踪(StOMP)
分段正交匹配追踪(StagewiseOMP)或者翻译为逐步正交匹配追踪,它是OMP另一种改进算法,每次迭代可以选择多个原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的 ...
- 浅谈压缩感知(二十二):压缩感知重构算法之正则化正交匹配追踪(ROMP)
主要内容: ROMP的算法流程 ROMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 一.ROMP的算法流程 正则化正交匹配追踪ROMP算法流程与OMP的最大不同之 ...
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)
主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...
- 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)
主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...
- 浅谈压缩感知(九):正交匹配追踪算法OMP
主要内容: OMP算法介绍 OMP的MATLAB实现 OMP中的数学知识 一.OMP算法介绍 来源:http://blog.csdn.net/scucj/article/details/7467955 ...
- Bootstrap入门(二十五)JS插件2:过渡效果
Bootstrap入门(二十五)JS插件2:过渡效果 对于简单的过渡效果,只需将 transition.js 和其它 JS 文件一起引入即可.如果你使用的是编译(或压缩)版的bootstrap.js ...
- 二十五种网页加速方法和seo优化技巧
一.使用良好的结构 可扩展 HTML (XHTML) 具有许多优势,但是其缺点也很明显.XHTML 可能使您的页面更加符合标准,但是它大量使用标记(强制性的 <start> 和 <e ...
- Bootstrap <基础二十五>警告(Alerts)
警告(Alerts)以及 Bootstrap 所提供的用于警告的 class.警告(Alerts)向用户提供了一种定义消息样式的方式.它们为典型的用户操作提供了上下文信息反馈. 您可以为警告框添加一个 ...
随机推荐
- SVM3 Soft Margin SVM
之前分为两部分讨论过SVM.第一部分讨论了线性SVM,并且针对线性不可分的数据,把原始的问题转化为对偶的SVM求解.http://www.cnblogs.com/futurehau/p/6143178 ...
- Warchall: Live RCE
具体漏洞是:CVE-2012-1823(PHP-CGI RCE) 在地址后面加进参数运行对应的php-cgi 参数的行为 例如 index.php?-s 相参于/usr/bin/php53-cgi/p ...
- Linux 中write()函数的出错情况及处理
write函数首先将进程需要发送的数据先放在进程缓冲区中,然后向socket的发送缓冲区进行拷贝,在此,可能出现这样情况,即当进程缓冲区中的数据量大于此时发送缓冲区中所能接受的数据量时,若此时处于阻塞 ...
- Selenium2+python自动化26-js处理内嵌div滚动条
前言 前面有篇专门用js解决了浏览器滚动条的问题,生活总是多姿多彩,有的滚动条就在页面上,这时候又得仰仗js大哥来解决啦. 一.内嵌滚动条 1.下面这张图就是内嵌div带有滚动条的样子,记住它的长相.
- ZT “樱花小萝莉”走红网络 网友:好想生个女儿
“樱花小萝莉”走红网络 网友:好想生个女儿 投递人 itwriter 发布于 2014-04-02 17:39 评论(3) 有717人阅读 原文链接 [收藏] « » 近日,一组被网友亲切地称呼 ...
- phpcms v9编辑器ckeditor设置回车换行br为段落p标签
phpcms v9和dedecms自带的编辑器都是使用的ckeditor,在默认情况下使用ckeditor编辑内容时,按下回车键后在源代码显示的是<br>而非<p>标签,对于习 ...
- mormot THttpApiServer使用例子
mormot THttpApiServer使用例子 THttpApiServer封装了WINDOWS的HTTPS.SYS. unit Unit1; interface uses Winapi.Wind ...
- maven 创建Hadoop程序
这里用来将新建的maven project 放入到现有的maven working set 中,这样我们就能看到项目之间的层级关系 选择下面的程序 在父项目中创建公共的pom,在pom中维护项目所需要 ...
- 关于把A表中的数据复制到B表中(整理)
如果A,B两个表中没有重复数据且表结构一样可以直接 insert into B select * from A 如果结构不一样可以 insert into B(字段列表),select 字段列表 fr ...
- 非官方windows下Cpython二进制扩展包下载地址
Unofficial Windows Binaries for Python Extension Packages url:http://www.lfd.uci.edu/~gohlke/pythonl ...