人工蜂群算法-python实现
ABSIndividual.py
import numpy as np
import ObjFunction class ABSIndividual: '''
individual of artificial bee swarm algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for artificial bee swarm algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
ABS.py
import numpy as np
from ABSIndividual import ABSIndividual
import random
import copy
import matplotlib.pyplot as plt class ArtificialBeeSwarm: '''
the class for artificial bee swarm algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.foodSource = self.sizepop / 2
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of abs
'''
for i in xrange(0, self.foodSource):
ind = ABSIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.foodSource):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def employedBeePhase(self):
'''
employed bee phase
'''
for i in xrange(0, self.foodSource):
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == i:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[i])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
vi.calculateFitness()
if vi.fitness > self.fitness[i]:
self.population[i] = vi
self.fitness[i] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[i].trials += 1 def onlookerBeePhase(self):
'''
onlooker bee phase
'''
accuFitness = np.zeros((self.foodSource, 1))
maxFitness = np.max(self.fitness) for i in xrange(0, self.foodSource):
accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1 for i in xrange(0, self.foodSource):
for fi in xrange(0, self.foodSource):
r = random.random()
if r < accuFitness[i]:
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == fi:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[fi])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[fi].trials += 1
break def scoutBeePhase(self):
'''
scout bee phase
'''
for i in xrange(0, self.foodSource):
if self.population[i].trials > self.params[0]:
self.population[i].generate()
self.population[i].trials = 0
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the abs algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while self.t < self.MAXGEN - 1:
self.t += 1
self.employedBeePhase()
self.onlookerBeePhase()
self.scoutBeePhase()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
print("Optimal function value is: %f; " % self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def printResult(self):
'''
plot the result of abs algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Artificial Bee Swarm algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__": bound = np.tile([[-600], [600]], 25)
abs = ABS(60, 25, bound, 1000, [100, 0.5])
abs.solve()
ObjFunction见简单遗传算法-python实现。
人工蜂群算法-python实现的更多相关文章
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- 人工鱼群算法-python实现
AFSIndividual.py import numpy as np import ObjFunction import copy class AFSIndividual: "" ...
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- 关于tcpdump抓包一个很详细的介绍
http://www.cnblogs.com/ggjucheng/archive/2012/01/14/2322659.html
- Volley(四)—— ImageLoader & NetworkImageView
Volley(四)—— ImageLoader & NetworkImageView ImageLoader是一个加载网络图片的封装类,其内部还是由ImageRequest来实现的.但因为源码 ...
- Android SQLite (二) 基本用法
在Android开发中SQLite起着很重要的作用,网上SQLite的教程有很多很多,不过那些教程大多数都讲得不是很全面.本人总结了一些SQLite的常用的方法,借着论坛的大赛,跟大家分享分享的. 一 ...
- GridPanel中getSelectionModel
GridPanel中getSelectionModel 更多 2014/5/1 来源:extjs学习浏览量:6783 学习标签: GridPanel extjs 本文导读:Ext.grid.GridP ...
- write_back 浅浅分析
hon@hon:~/f2fs$ grep -i "clearpagedirty" . -nr./mm/shmem.c:1240: ClearPageDirty(page);./mm ...
- 区块链技术(一):Truffle开发入门
以太坊是区块链开发领域最好的编程平台,而truffle是以太坊(Ethereum)最受欢迎的一个开发框架,这是我们第一篇区块链技术文章介绍truffle的原因,实战是最重要的事情,这篇文章不讲原理,只 ...
- [转]C# WinForm treeview checkbox----递归算法利用
在平常开发中,treeview的节点显示checkbox,若节点存在几级时,往往希望,选中父节点后,其子节点都要选中,如何实现勒,请看 using System; using System.Colle ...
- 减少图片HTTP 请求的方案
<Higb Performance Web Sites>(中文名:“高性能网站建设指南”)这本书对于前端工程师来说,绝对值得一读.本人有幸从公司借阅了,但不幸的是感觉翻译有点怪怪的.尤其是 ...
- WinForm编程数据视图之DataGridView浅析
学习C#语言的朋友们肯定或多或少地接触到了WinForm编程,在C#语言的可视化IDE中(如VS.NET中)使用设计器可以让我们轻松地完成窗体.按钮.标签.图片框等等控件的组合,我们可以轻易地做出界面 ...
- scrapy 的 selector 练习
网页结构: <html> <head> <base href='http://example.com/' /> <title>Example websi ...