The Subtle Balloons Company (SBC) is the main balloon provider for programming contests; it has
huge factories and warehouses, as well as an extensive truck
eet to ensure the contestants' happiness.
There are lots of competition sites in Nlogonia, and all of them hired SBC for supplying balloons for
their contests. Nlogonia is an archipelago connected by several bridges. Every island of Nlogonia may
have several regional sites and may also house several SBC warehouses.
When planning the routes for balloon deliveries, SBC faced a problem: for safety issues, every
bridge in Nlogonia has some maximum weight limit for vehicles which cross it. And because of the
great net weight of the transported merchandise, SBC operations' chief asked you to write a program to
determine the maximum weight allowed to be transported between warehouses and competition sites.
Input
The input contains several test cases. The rst line of a test case contains three integers N, M and S
which indicate, respectively, the number of islands, the number of bridges that connect the islands and
the number of sites. The islands are numbered from 1 to N.
Each of the next M lines describes a bridge. The description of a bridge consists in a line with
three integers A, B and W, indicating respectively the two islands connected by the bridge and the
maximum weight allowed in that bridge, in tons.
All bridges are two-way roads; every pair of islands is connected by at most one bridge; and it is
possible to reach every other island in the archipelago using only bridges (naturally it may be needed
to pass through other islands to do so).
Each of the next S lines describe a competition site and contains two integers L and H indicat-
ing, respectively, the number of the island where this site is and the number of the island where the
wharehouse which will be used to deliver the balloons to the site is.
Output
For each site in a test case, in the order they were given, your program must produce a single line,
containing a single integer, the biggest weight which can be transported by truck from the warehouse
to the site.
Restrictions

• 2 ≤ N ≤ 2 × 104
• 1 ≤ M ≤ 105
• 1 ≤ S ≤ 5 × 104
• 1 ≤ A, B, L, H ≤ N, A ̸= B, L ̸= H
• 0 ≤ W ≤ 105

Sample Input
4 5 4
1 2 9
1 3 0
2 3 8
2 4 7
3 4 4
1 4
2 1
3 1
4 3
4 5 2
1 2 30
2 3 20
3 4 10
4 1 40
2 4 50
1 3
1 2

Sample Output
7
9
8
7
20
40

1: 如果(u,v)为轻边,则size(v)<=size(u)/2;

2: 从根到某一点的路径上轻边的个数不大于O(logN)

时间复杂度O(N*logN*logN)

树链剖分:

view code#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
typedef long long ll;
const int INF = 1<<30;
const int M = 200010;
const int N = 20010;
int n, m, Q;
int pre[N], sz[N], fa[N], top[N], id[N], fid[N];
int dep[N], gid, son[N];
int Min[N<<2]; struct edge
{
int u, v, w, next;
bool operator < (const edge &o)const{
return w>o.w;
}
edge(int u, int v, int w):u(u),v(v),w(w) {}
edge() {}
edge(int u, int v, int w, int next):u(u),v(v),w(w),next(next) {}
}e[M], mst[M];
int mcnt; void addedge(int u, int v, int w)
{
mst[mcnt] = edge(u, v, w, pre[u]);
pre[u] = mcnt++;
mst[mcnt] = edge(v, u, w, pre[v]);
pre[v] = mcnt++;
} int find(int x)
{
return x==fa[x]?x:(fa[x]=find(fa[x]));
} void MST()
{
mcnt = 0;
for(int i=0; i<=n; i++) fa[i] = i;
memset(pre, -1, sizeof(pre));
sort(e, e+m);
for(int i=0; i<m; i++)
{
int u = find(e[i].u), v = find(e[i].v);
if(u==v) continue;
// printf("(%d, %d) ->%d\n", e[i].u, e[i].v, e[i].w);
fa[u] = v;
addedge(e[i].u, e[i].v, e[i].w);
}
} void dfs(int u, int f, int d)
{
// fa[u]表示u的父亲,dep[u]表示u的深度
//sz[u]表示u字节点的个数
//son[u]与u在同重链上的儿子节点
fa[u] = f; dep[u] = d; son[u] = 0; sz[u] = 1;
for(int i=pre[u]; ~i; i=mst[i].next)
{
int v = mst[i].v;
if(v==f) continue;
dfs(v, u, d+1);
sz[u] += sz[v];
if(sz[son[u]] < sz[v]) son[u] = v;
}
} void get_pos(int u, int f)
{
//id[u]表示u与其父亲节点的连边,在线段树中的位置
id[u] = ++gid;
fid[gid] = u;//fid与id数组相反,在这道题没什么用
top[u] = f;//top[u] 表示u所在的重链的顶端节点
if(son[u]!=0) get_pos(son[u], f);
for(int i=pre[u]; ~i; i=mst[i].next)
{
int v = mst[i].v;
if(v==fa[u] || v==son[u]) continue;
get_pos(v, v);
}
} void build(int l, int r, int rt)
{
if(l==r){
Min[rt] = INF;
return ;
}
int m = (l+r)>>1;
build(lson);
build(rson);
} void update(int p, int c, int l, int r, int rt)
{
if(l==r){
Min[rt] = c;
return ;
}
int m = (l+r)>>1;
if(p<=m) update(p, c, lson);
else update(p, c, rson);
Min[rt] = min(Min[rt<<1], Min[rt<<1|1]);
} int query(int L, int R, int l ,int r, int rt)
{
if(L<=l && R>=r) return Min[rt];
int m = (l+r)>>1, ans = INF;
if(L<=m) ans = min(ans, query(L,R,lson));
if(R>m) ans = min(ans, query(L,R,rson));
return ans;
} int lca(int u, int v)
{
int fv = top[v], fu = top[u];
int ans = INF;
while(fv!=fu)
{
if(dep[fv]>dep[fu])
{
swap(fv, fu); swap(u,v);
}
ans = min(ans, query(id[fu], id[u], 1, gid, 1));
u = fa[fu];
fu = top[u];
}
if(dep[u]<dep[v]) swap(u, v);
if(u!=v) ans = min(ans, query(id[v]+1, id[u], 1, gid, 1));//ti[v]指的是v与其父亲的边,所以+1
return ans;
} int main()
{
// freopen("in.txt", "r", stdin);
while(scanf("%d%d%d", &n, &m, &Q)>0)
{
for(int i=0; i<m; i++)
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
MST();
sz[1] = 0, gid = 0;
dfs(1, 1, 1);
get_pos(1, 1);
build(1, gid, 1);
int u, v;
for(int i=0; i<mcnt; i++)
{
int u = mst[i].u, v = mst[i].v;
if(dep[u]<dep[v]) swap(u,v);
update(id[u], mst[i].w, 1, gid, 1);
}
while(Q--)
{
scanf("%d%d", &u, &v);
printf("%d\n", lca(u,v));
}
}
return 0;
}

uva 12655 Trucks [LCA](树链剖分+MST)的更多相关文章

  1. Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)

    Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...

  2. [BZOJ3626] [LNOI2014]LCA(树链剖分)

    [BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, ...

  3. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  4. Codeforces Round #329 (Div. 2) D. Happy Tree Party LCA/树链剖分

    D. Happy Tree Party     Bogdan has a birthday today and mom gave him a tree consisting of n vertecie ...

  5. BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )

    说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...

  6. [CodeVS2370] 小机房的树 (LCA, 树链剖分, LCT)

    Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花 ...

  7. BZOJ3626[LNOI2014]LCA——树链剖分+线段树

    题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...

  8. bzoj 3626 : [LNOI2014]LCA (树链剖分+线段树)

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q ...

  9. LCA树链剖分

    LCA(Lowest Common Ancestor 最近公共祖先)定义如下:在一棵树中两个节点的LCA为这两个节点所有的公共祖先中深度最大的节点. 比如这棵树 结点5和6的LCA是2,12和7的LC ...

随机推荐

  1. 新学C#线程使用总结

    这两天在项目上需要使用多线程技术,研究了半天,碰到了一些问题,现在简要总结下. 线程的使用其实很简单,和JAVA里面差不多,但是还是有很多特别的地方,在C#中的线程,如果要对非线程创建的控件进行操作的 ...

  2. C#获取url中参数键值对的方法

    方法如下: /// <summary> /// 遍历Url中的参数列表 /// </summary> /// <returns>如:(?userName=keley ...

  3. javaweb学习总结(三十二)——JDBC学习入门

    一.JDBC相关概念介绍 1.1.数据库驱动 这里的驱动的概念和平时听到的那种驱动的概念是一样的,比如平时购买的声卡,网卡直接插到计算机上面是不能用的,必须要安装相应的驱动程序之后才能够使用声卡和网卡 ...

  4. HTML—one

    1.我们做一个完整的网页,要做三个部分 前端部分:Html(是一种超文本标记语言,网页)+css(网页外观)+js(执行动作,特效) 数据库:sqlserver 动态部分:.net(平台),c#(语言 ...

  5. 重新想象 Windows 8 Store Apps (64) - 后台任务: 开发一个简单的后台任务

    [源码下载] 重新想象 Windows 8 Store Apps (64) - 后台任务: 开发一个简单的后台任务 作者:webabcd 介绍重新想象 Windows 8 Store Apps 之 后 ...

  6. java初始化构造函数调用顺序

    类初始化时构造函数调用顺序: (1)初始化对象的存储空间为零或null值:  (2)调用父类构造函数:  (3)按顺序分别调用类成员变量和实例成员变量的初始化表达式:  (4)调用本身构造函数. 例子 ...

  7. 数据库的sacle-up和scale-out与sharding技术区分

    scale 英文是扩展的意思. 数据库要进行扩展,指的是存储系统不够,或者性能不够,要提升的时候,就要进行扩展. 分为向上扩展和横向扩展,这就像一个人往上面发展与横向发展两种思路. scale-up: ...

  8. 前端技巧:禁止浏览器static files缓存篇(转)

    前端技巧:禁止浏览器static files缓存篇 由于CSS/JS文件经常需要改动,前端调试时是不希望浏览器缓存这些文件的. 本文记录博主的经验. Meta法 目前在chrome调试还没有遇到问题, ...

  9. javascript宿主对象之window.history

    window.historys属性允许我们操作同一个浏览器回话中的已访问页面,例如我们可以看到在这之前我们浏览页面的数量: window.history.length 由于隐私保护,我们无法获取这些页 ...

  10. SharePoint 页面中添加.Net代码

    今天整理资料,看到一个非常有意思的截图,可以在SharePoint页面库里的页面中,添加.Net代码,只需修改一下相应应用程序的web.config文件,即可: 在web.config里面的<P ...