LeetCode题解001:两数之和
两数之和
题目
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标
你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
Java:
方法一:暴力法
暴力法很简单,就是用两遍循环的方式遍历nums
class Solution {
public int[] twoSum(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
for (int j = i + 1; j < nums.length; j++) {
if (nums[j] == target - nums[i]) {
return new int[] { i, j };
}
}
}
throw new IllegalArgumentException("No two sum solution");
}
}
复杂度分析:
时间复杂度:O(n^2)
- 对于每个元素,我们试图通过遍历数组的其余部分来寻找它所对应的目标元素,这将耗费 O(n) 的时间。因此时间复杂度为 O(n^2)
空间复杂度:O(1)
方法二:两遍哈希表
为了对运行时间复杂度进行优化,我们需要一种更有效的方法来检查数组中是否存在目标元素。如果存在,我们需要找出它的索引。保持数组中的每个元素与其索引相互对应的最好方法是什么?哈希表
通过以空间换取速度的方式,我们可以将查找时间从 O(n) 降低到 O(1)。哈希表正是为此目的而构建的,它支持以 近似 恒定的时间进行快速查找。我用“近似”来描述,是因为一旦出现冲突,查找用时可能会退化到 O(n)。但只要你仔细地挑选哈希函数,在哈希表中进行查找的用时应当被摊销为 O(1)
一个简单的实现使用了两次迭代。在第一次迭代中,我们将每个元素的值和它的索引添加到表中。然后,在第二次迭代中,我们将检查每个元素所对应的目标元素(target - nums[i]target−nums[i])是否存在于表中。注意,该目标元素不能是 nums[i]nums[i] 本身!
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
map.put(nums[i], i);
}
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement) && map.get(complement) != i) {
return new int[] { i, map.get(complement) };
}
}
throw new IllegalArgumentException("No two sum solution");
}
}
复杂度分析:
时间复杂度:O(n)
- 我们把包含有 n 个元素的列表遍历两次。由于哈希表将查找时间缩短到 O(1),所以时间复杂度为 O(n)
空间复杂度:O(n)
- 所需的额外空间取决于哈希表中存储的元素数量,该表中存储了 n个元素
方法三:一遍哈希表
事实证明,我们可以一次完成。在进行迭代并将元素插入到表中的同时,我们还会回过头来检查表中是否已经存在当前元素所对应的目标元素。如果它存在,那我们已经找到了对应解,并立即将其返回
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement)) {
return new int[] { map.get(complement), i };
}
map.put(nums[i], i);
}
throw new IllegalArgumentException("No two sum solution");
}
}
复杂度分析:
时间复杂度:O(n)
- 我们只遍历了包含有 n 个元素的列表一次。在表中进行的每次查找只花费 O(1)的时间
空间复杂度:O(n)
- 所需的额外空间取决于哈希表中存储的元素数量,该表最多需要存储 n 个元素
C++:
方法一:暴力法
暴力法很简单,就是用两遍循环的方式遍历nums
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
int i,j;
for(i=0;i<nums.size();++i){
for(j=i+1;j<nums.size();++j){
if(nums[i]+nums[j]==target){
return {i,j};
}
}
}
return {i,j};
}
};
复杂度分析:
时间复杂度:O(n^2)
对于每个元素,我们试图通过遍历数组的其余部分来寻找它所对应的目标元素,这将耗费 O(n) 的时间。因此时间复杂度为 O(n^2)
空间复杂度:O(1)
方法二:两遍哈希法
该方法用map实现,map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
map<int,int> a;//建立hash表存放数组元素
vector<int> b(2,-1);//存放结果
for(int i=0;i<nums.size();i++){
a.insert(map<int,int>::value_type(nums[i],i));
}
for(int i=0;i<nums.size();i++){
if(a.count(target-nums[i])>0&&(a[target-nums[i]]!=i)){
//判断是否找到目标元素且目标元素不能是本身
b[0]=i;
b[1]=a[target-nums[i]];
break;
}
}
return b;
};
};
复杂度分析:
时间复杂度:O(n)
- 我们把包含有 n 个元素的列表遍历两次。由于哈希表将查找时间缩短到 O(1),所以时间复杂度为 O(n)
空间复杂度:O(n)
- 所需的额外空间取决于哈希表中存储的元素数量,该表中存储了 n个元素
方法三:一遍哈希法
在两遍哈希方法上进行改进:在进行迭代并将元素插入到表中的同时,我们还会回过头来检查表中是否已经存在当前元素所对应的目标元素。如果它存在,那我们已经找到了对应解,并立即将其返回
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
map<int,int> a;//提供一对一的hash
vector<int> b(2,-1);//用来承载结果,初始化一个大小为2,值为-1的容器b
for(int i=0;i<nums.size();i++){
if(a.count(target-nums[i])>0){
b[0]=a[target-nums[i]];
b[1]=i;
break;
}
a[nums[i]]=i;//反过来放入map中,用来获取结果下标
}
return b;
};
};
时间复杂度:O(n)
- 我们只遍历了包含有 n 个元素的列表一次。在表中进行的每次查找只花费 O(1)的时间
空间复杂度:O(n)
- 所需的额外空间取决于哈希表中存储的元素数量,该表最多需要存储 n 个元素
Python:
方法一:暴力法
用 Python 中 list 的相关函数求解
解题关键主要是想找到 num2 = target - num1,是否也在 list 中,那么就需要运用以下两个方法:num2 in nums,返回 True 说明有戏
nums.index(num2),查找 num2 的索引
def twoSum(nums, target):
lens = len(nums)
j=-1
for i in range(lens):
if (target - nums[i]) in nums:
if (nums.count(target - nums[i]) == 1)&(target - nums[i] == nums[i]):#如果num2=num1,且nums中只出现了一次,说明找到是num1本身。
continue
else:
j = nums.index(target - nums[i],i+1)#index(x,i+1)是从num1后的序列后找num2
break
if j>0:
return [i,j]
else:
return []
方法二:
执行通过,不过耗时较长,共 1636ms。
在方法一的基础上,优化解法。想着,num2 的查找并不需要每次从 nums 查找一遍,只需要从 num1 位置之前或之后查找即可。但为了方便 index 这里选择从 num1 位置之前查找
def twoSum(nums, target):
lens = len(nums)
j=-1
for i in range(1,lens):
temp = nums[:i]
if (target - nums[i]) in temp:
j = temp.index(target - nums[i])
break
if j>=0:
return [j,i]
执行通过,耗时缩短一半多,共 652ms。
方法三:字典模拟哈希
这种办法相较于方法一其实就是字典记录了 num1 和 num2 的值和位置,而省了再查找 num2 索引的步骤
def twoSum(nums, target):
hashmap={}
for ind,num in enumerate(nums):
hashmap[num] = ind
for i,num in enumerate(nums):
j = hashmap.get(target - num)
if j is not None and i!=j:
return [i,j]
通过字典的方法,查找效率快很多,执行速度大幅缩短,共 88ms。
方法四:
类似方法二,不需要 mun2 不需要在整个 dict 中去查找。可以在 num1 之前的 dict 中查找,因此就只需要一次循环可解决
def twoSum(nums, target):
hashmap={}
for i,num in enumerate(nums):
if hashmap.get(target - num) is not None:
return [i,hashmap.get(target - num)]
hashmap[num] = i #这句不能放在if语句之前,解决list中有重复值或target-num=num的情况
hashmap[num] = i #这句不能放在if语句之前,解决list中有重复值或target-num=num的情况
不过方法四相较于方法三的运行速度没有像方法二相较于方法一的速度提升。运行速度在 70ms 多
LeetCode题解001:两数之和的更多相关文章
- leetcode题解:两数之和
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数组中同样的元 ...
- LeetCode 题解 | 1. 两数之和
题目描述: 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, 15], t ...
- Leetcode 001. 两数之和(扩展)
1.题目要求 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 2.解法一:暴力法(for*for,O(n*n)) ...
- 每日一道 LeetCode (1):两数之和
引言 前段时间看到一篇刷 LeetCode 的文章,感触很深,我本身自己上大学的时候,没怎么研究过算法这一方面,导致自己直到现在算法都不咋地. 一直有心想填补下自己的这个短板,实际上又一直给自己找理由 ...
- Leetcode系列之两数之和
Leetcode系列之两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标.你可以假设每种输入只会对应一个答案.但是,你 ...
- leetcode刷题--两数之和(简单)
一.序言 第一次刷leetcode的题,之前从来没有刷题然后去面试的概念,直到临近秋招,或许是秋招结束的时候才有这个意识,原来面试是需要刷题的,面试问的问题都是千篇一律的,只要刷够了题就差不多了,当然 ...
- LeetCode :1.两数之和 解题报告及算法优化思路
最近开始重拾算法,在 LeetCode上刷题.顺便也记录下解题报告以及优化思路. 题目链接:1.两数之和 题意 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 ...
- LeetCode 167:两数之和 II - 输入有序数组 Two Sum II - Input array is sorted
公众号: 爱写bug(ID:icodebugs) 给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数. 函数应该返回这两个下标值 index1 和 index2,其中 index ...
- LeetCode | No.1 两数之和
题目描述: Given an array of integers, return indices of the two numbers such that they add up to a speci ...
- leetCode刷题 | 两数之和
两数之和: 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数 ...
随机推荐
- Jedis & spring-data-redis
当我们了解了redis的五大数据类型,手动去敲一敲每个数据类型对应的命令,无论是再来看jedis,还是spring-data-redis都是很轻松的,他们提供的API都是基于原生的redis命令,可读 ...
- Mybatis的原理分析1(@Mapper是如何生效的)
接着我们上次说的SpringBoot自动加载原理.我们大概明白了在maven中引入mybatis后,这个模块是如下加载的. 可能会有人问了,一般我们的dao层都是通过Mapper接口+Mapper.x ...
- mysql定时任务(event事件)
1.事件简介 事件(event)是MySQL在相应的时刻调用的过程式数据库对象.一个事件可调用一次,也可周期性的启动,它由一个特定的线程来管理的,也就是所谓的“事件调度器”. 事件和触发器类似,都是在 ...
- Java中的“scanf()、cin()、input()"
最近在写一个Java程序时遇到一个问题,就是如何在Java里面输入数值,又叫做获取键盘输入值. 因为c语言里面有scanf(),C++里面有cin(),python里面有input().Java里面有 ...
- java8-12-Optional类
Optional类 java.util.Optional 是一个容器类 避免空指针 NPE 能够快速定位空指针 常用方法: Optional.of(T t) : 创建一个 Optio ...
- Educational Codeforces Round 74 (Rated for Div. 2)
传送门 A. Prime Subtraction 判断一下是否相差为\(1\)即可. B. Kill 'Em All 随便搞搞. C. Standard Free2play 题意: 现在有一个高度为\ ...
- xampp配置二级域名通过不同端口访问不同网站
首先需要在xampp\apache\conf\extra\httpd-vhost.conf中写入配置的二级域名 <VirtualHost *:8081> // 该网站通过监测8081端口 ...
- Acwing40. 顺时针打印矩阵
地址 https://www.acwing.com/solution/acwing/content/3623/ 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字. 样例 输入: [ [, ...
- acwing 517. 信息传递
地址 https://www.acwing.com/problem/content/description/519/ 有 n 个同学(编号为 1 到 n)正在玩一个信息传递的游戏. 在游戏里每人都有一 ...
- MySQL常用数据类型 length 专题
MySQL-data_type数据类型 1.查看数据类型 mysql> help data type //通过help对数据进行查看,以及使用的方法 2.MySQL常见的数据类型 整数in ...