[Mathematics][BJTU][Calculus]Detailed explanations and proofs of the Dirac-Abel Discriminant Methods which deal with the conditional convergence
So, today we will talk about the conditional convergence and two discriminant methods, namely Dirac-Abel, which help us to decide whether a infinite integral is conditional convergence.
Definitions of absolute convergence and conditional convergence.
1. Absolute Convergence
$\displaystyle\int_{a}^{+\infty}f(x)dx$ and $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ are both convergent.
By the way, the convergence of $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ can actually deduce that $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent.
2. Conditional Convergence
$\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent, but $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ is not convergent.
Dirac-Abel Discriminant Methods(Dealing with Conditional Convergence).
1. Dirac Discriminant Method
if $\displaystyle\int_{a}^{x}f(u)du$ has the bound, and $\displaystyle g(x)$ is monotonic, $\displaystyle g(x)\to0$ when $\displaystyle x\to+\infty$,then
$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.
2. Abel Discriminant Method
if $\displaystyle\int_{a}^{+\infty}f(u)du$ is convergent, and $\displaystyle g(x)$ is monotonic and has the bound, then
$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.
Proof:
Before we prove these two discriminant methods, we need to first prove two related theorems, namely first and second mean value theorem for integral.
First mean value theorem for integral.
if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ does not change the sign and is integrable in the $\displaystyle [a,b]$, then
$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.
Proof:
Since $\displaystyle f(x)\in C[a,b]$, then it must has minimum and maximum. Let's set them as $m$ and $M$, so
$\displaystyle m\leq f(x) \leq M$
Since $\displaystyle g(x)$ does not change the sign in the $\displaystyle[a,b]$, let's assume that $\displaystyle g(x)\ge0$. So, we multiply this inequality by $\displaystyle g(x)$ and get
$\displaystyle m g(x)\leq f(x)g(x) \leq M g(x)$
And we integral each element from $a$ to $b$, so
$\displaystyle m \int_{a}^{b}g(x)dx \leq \int_{a}^{b}f(x)g(x)dx \leq M \int_{a}^{b}g(x)dx$
If $\displaystyle \int_{a}^{b}g(x)dx = 0$, then the theorem is obviously correct.
If $\displaystyle \int_{a}^{b}g(x)dx \neq 0$, then since $\displaystyle g(x)\ge0$ in the $[a,b]$, we know that $\displaystyle \int_{a}^{b}g(x)dx > 0$, so we divide each element by $\displaystyle \int_{a}^{b}g(x)dx$, and get
$\displaystyle m\leq \frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}\leq M$.
And since $\displaystyle f(x) \in C[a,b]$, according to intermediate value theorem, we get that
$\displaystyle f(\xi)=\frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}$, in which $\xi$ is in the range of $[a,b]$.
Namely,
$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.
Second mean value theorem for integral.
if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ is monotonic and differentiable in $[a,b]$, then
$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.
Proof:
Set $\displaystyle F(x)=\int_{a}^{x}f(u)du\tag{$*$}$,then apply partial integeral, we get
$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(x)g(x)\Big|_{a}^{b}-\int_{a}^{b}F(x)g'(x)dx$.
Namely,
$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx$.
Since $\displaystyle g(x)$ is monotonic, $\displaystyle g'(x)$ does not change sign in the $[a,b]$, then we apply the first mean value theorem for integral,
$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=F(b)g(b)-F(a)g(a)-F(\xi)\int_{a}^{b}g'(x)dx=F(b)g(b) - F(a)g(a)-F(\xi)(g(b)-g(a))$, in which $\xi$ is in the range of $[a,b]$.
So, by a few rearrangements,
$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=g(b)(F(b)-F(\xi))+g(a)(F(\xi)-F(a))$, in which $\xi$ is in the range of $[a,b]$..
Then, plug $(*)$ in(By the way, the integral variable does not matter in the difinite integral, so we can substitude $u$ with $x$),
$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx = g(b)\int_{\xi}^{b}f(x)dx+g(a)\int_{a}^{\xi}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.
Finally, we get
$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.
Okay, and there is a last thing which we need to know to prove these two discriminant convergence. It's Cauchy's Convergence Test in the form of function. I will state it here but not prove it.
$\displaystyle \lim_{x\to +\infty}f(x)$ is convergent $\displaystyle \Leftrightarrow$ $\displaystyle \forall \epsilon > 0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|f(x_{1})-f(x_{2})\right|<\epsilon$.
Proof of Dirac Discriminant Convergence.
Based on the assumptions, set $\displaystyle \left|F(x)\right|=\left|\int_{a}^{x}f(u)du\right| \le M\tag{$\blacktriangle$}$, in which $\displaystyle x$ is in the range of $[a,+\infty)$ and $\displaystyle M > 0$.
And,
$\displaystyle \because g(x)$ is monotonic and goes to $0$ when $\displaystyle x \to +\infty$.
$\displaystyle \therefore \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}\tag{$1$}$.
According to the difinition of infinite integral, $\displaystyle \int_{a}^{+\infty}f(x)g(x)dx \Longleftrightarrow \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$.
If we want to prove,
$\displaystyle \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent.
based on the Cauchy's Convergence Test, we just need to prove that
$\displaystyle \forall \epsilon >0,\exists X>0,\forall x_{1}>X,x_{2}>X,\left|\int_{a}^{x_{2}}f(x)g(x)dx-\int_{a}^{x_{1}}f(x)g(x)dx\right| =\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|< \epsilon$.
So, for all $\epsilon > 0$,
In the $(1)$, we set $\displaystyle \bar{\epsilon}=\frac{\epsilon}{4M}$, and get $\displaystyle \exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}=\frac{\epsilon}{4M}\tag{$2$}$ (In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$)
for all $\displaystyle x_{1}>\bar{X}$ and $\displaystyle x_{2}>\bar{X}$,
Using the second mean value theorem for integral,
$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| = \left|g(x_{1})\int_{x_{1}}^{\xi}f(x)dx+g(x_{2})\int_{\xi}^{x2}f(x)dx\right|\tag{$3$}$.
Using absolute value inequality,
$\displaystyle (3) \le \left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$4$}$
And that is,
$\displaystyle (4)=\left|g(x_{1})\right|\left|\int_{a}^{\xi}f(x)dx-\int_{a}^{x_{1}}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{a}^{x_{2}}f(x)dx-\int_{a}^{\xi}f(x)dx\right|$.
Using absolute value inequality again, and according to $(\blacktriangle)$ and $(2)$,
$\displaystyle (4) \le 2M(\left|g(x_{1})\right| + \left|g(x_{2})\right|) < 2M*2\bar{\epsilon}=\epsilon$.
Thus, by summing up, $\displaystyle \forall \epsilon >0,\exists X=\bar{X},\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| < \epsilon$, the theorem is proved.
Proof of Abel Discriminant Convergence.
The proof of Abel Discriminant Convergence is almost the same to the proof of Dirac Discriminant Convergence, so I will omit some trivial processes.
Based on the assumptions, let's set $\displaystyle \left|g(x)\right|\le M\tag{$\blacktriangle$}$, for $x$ in the range of $[a,+\infty)$, and in which $M > 0$.
$\displaystyle \because \int_{a}^{+\infty}f(x)dx$ is convergent
$\displaystyle \therefore \lim_{b \to +\infty}\int_{a}^{b}f(x)dx$ exists.
According to the Cauchy's Convergence Test,
$\displaystyle \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{a}^{x_{1}}f(x)dx-\int_{a}^{x_{2}}f(x)dx\right|=\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}\tag{$1$}$
If we want to prove that $\displaystyle \lim_{b \to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent, we just need to prove that
$\displaystyle \forall \epsilon >0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$.
So, for all $\displaystyle \epsilon > 0$,
In $(1)$. let's set $\displaystyle \bar{\epsilon} = \frac{\epsilon}{2M}$, then $\displaystyle \exists \bar{X}(\bar{\epsilon}), \forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}=\frac{\epsilon}{2M}\tag{$2$}$(In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$).
For $\displaystyle \forall x_{1}>\bar{X},\forall x_{2}>\bar{X}$, using the second mean value theorem for integral and absolute value inequality,
$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|\le\left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$3$}$, in which $\xi$ is in the range of $[x_{1},x_{2}]$.
Combined with the $(\blacktriangle)$ and $(2)$,
$\displaystyle (3)\le 2M\bar{\epsilon}=\epsilon$
Thus, by summing up, $\displaystyle \forall \epsilon > 0,\exists X = \bar{X},\forall x_{1} > X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$, the theorem is proved.
[Mathematics][BJTU][Calculus]Detailed explanations and proofs of the Dirac-Abel Discriminant Methods which deal with the conditional convergence的更多相关文章
- INEQUALITY BOOKS
来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...
- 10-free-must-read-books-machine-learning-data-science
Spring. Rejuvenation. Rebirth. Everything’s blooming. And, of course, people want free ebooks. With ...
- 2015,2016 Open Source Yearbook
https://opensource.com/yearbook/2015 The 2015 Open Source Yearbook is a community-contributed collec ...
- MIT课程
8.02 Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...
- [ZZ] Understanding 3D rendering step by step with 3DMark11 - BeHardware >> Graphics cards
http://www.behardware.com/art/lire/845/ --> Understanding 3D rendering step by step with 3DMark11 ...
- 【转】简单的 Laravel 5 REST API
Introduction Almost all successful internet based companies have APIs. API is an acronym for Applica ...
- books
<<learning opencv>>, 布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者), 这本书一定要第二版的,因为第二版 ...
- Command Line-Version (SetACL.exe) – Syntax and Description
For a quick start, tell SetACL the following: Object name (-on): This is the path to the object SetA ...
- arm-none-eabi-gcc install
Zephyr除了官方的编译工具,还有第三方工具 arm-none-eabi-gcc . This PPA is an alternative to toolchain released at http ...
随机推荐
- 2019年10月13日 计算机英语习题 wangqingchao
Match the explanations in Column B with words and expressions in Columna. (搭配每组中意义相同的词或短语) Types of ...
- python中的集合、元组和布尔
#元组,元组跟列表一样,只不过列表可读可写,而元组一般用来只读,不修改#python中不允许修改元组的数据,也包括不能删除其中的元素. t1 = ('a','b','c','d','s','a') & ...
- javascript 解决默认取整的坑(目前已知的最佳解决方案)
javascript 解决默认取整的坑(目前已知的最佳解决方案) 复现该问题 js在数字操作时总会取更高精度的结果,例如1234/10结果就是123.4,但是在c或者java中整数除以10的结果还是整 ...
- tomcat 日志(2)
一.Log4j在Tomcat中的配置说明(tomcat6) 学习Java中,从简单的开始.如果需要文中提到的文件可以找我要. http://www.apache.org/dist/tomcat/tom ...
- 深入理解计算机系统 第二章 信息的表示和处理 part2
上一周遗留问题的解决 问题:原码.反码.补码是只针对有符号数吗?无符号数有没有这三种编码方式? 得到的答案:对于无符号数,原码.反码和补码是一致的 进一步,由于有符号数是以补码的形式存储在计算机中 ...
- 大数据HDFS相关的一些运维题
1.在 HDFS 文件系统的根目录下创建递归目录“1daoyun/file”,将附件中的BigDataSkills.txt 文件,上传到 1daoyun/file 目录中,使用相关命令查看文件系统中 ...
- pandas的使用(5)
pandas的使用(5)-- 缺失值的处理
- 力扣(LeetCode)第一个错误的版本 个人题解
你是产品经理,目前正在带领一个团队开发新的产品.不幸的是,你的产品的最新版本没有通过质量检测.由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的. 假设你有 n 个版本 [1, ...
- python selenium框架的Xpath定位元素
我们工作中经常用到的定位方式有八大种:id name class_name tag_name link_text partial_link_text xpath css_selector 本篇内容主要 ...
- 模块-time模块
time模块 time翻译过来就是时间,这个模块是与时间相关的模块,那么言外之意,如果我们在工作中遇到了对时间的需求(比如获取当前时间,获取时间戳等等)就要先想到time模块. time模块中对于时 ...