So, today we will talk about the conditional convergence and two discriminant methods, namely Dirac-Abel, which help us to decide whether a infinite integral is conditional convergence.

Definitions of absolute convergence and conditional convergence.

1. Absolute Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ and $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ are both convergent.

    By the way, the convergence of $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ can actually deduce that $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent.

2. Conditional Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent, but $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ is not convergent.

Dirac-Abel Discriminant Methods(Dealing with Conditional Convergence).

1. Dirac Discriminant Method

  if $\displaystyle\int_{a}^{x}f(u)du$ has the bound, and $\displaystyle g(x)$ is monotonic, $\displaystyle g(x)\to0$ when $\displaystyle x\to+\infty$,then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

2. Abel Discriminant Method

  if $\displaystyle\int_{a}^{+\infty}f(u)du$ is convergent, and $\displaystyle g(x)$ is monotonic and has the bound, then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

Proof:

Before we prove these two discriminant methods, we need to first prove two related theorems, namely first and second mean value theorem for integral.

First mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ does not change the sign and is integrable in the $\displaystyle [a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Since $\displaystyle f(x)\in C[a,b]$, then it must has minimum and maximum. Let's set them as $m$ and $M$, so

$\displaystyle m\leq f(x) \leq M$

    Since $\displaystyle g(x)$ does not change the sign in the $\displaystyle[a,b]$, let's assume that $\displaystyle g(x)\ge0$. So, we multiply this inequality by $\displaystyle g(x)$ and get

$\displaystyle m g(x)\leq f(x)g(x) \leq M g(x)$

    And we integral each element from $a$ to $b$, so

$\displaystyle m \int_{a}^{b}g(x)dx \leq \int_{a}^{b}f(x)g(x)dx \leq M \int_{a}^{b}g(x)dx$

    If $\displaystyle \int_{a}^{b}g(x)dx = 0$, then the theorem is obviously correct.

    If $\displaystyle \int_{a}^{b}g(x)dx \neq 0$, then since $\displaystyle g(x)\ge0$ in the $[a,b]$, we know that $\displaystyle  \int_{a}^{b}g(x)dx > 0$, so we divide each element by $\displaystyle \int_{a}^{b}g(x)dx$, and get

$\displaystyle m\leq \frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}\leq M$.

    And since $\displaystyle f(x) \in C[a,b]$, according to intermediate value theorem, we get that

$\displaystyle f(\xi)=\frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}$, in which $\xi$ is in the range of $[a,b]$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.


Second mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ is monotonic and differentiable in $[a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Set $\displaystyle F(x)=\int_{a}^{x}f(u)du\tag{$*$}$,then apply partial integeral, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(x)g(x)\Big|_{a}^{b}-\int_{a}^{b}F(x)g'(x)dx$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx$.

    Since $\displaystyle g(x)$ is monotonic, $\displaystyle g'(x)$ does not change sign in the $[a,b]$, then we apply the first mean value theorem for integral,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=F(b)g(b)-F(a)g(a)-F(\xi)\int_{a}^{b}g'(x)dx=F(b)g(b) - F(a)g(a)-F(\xi)(g(b)-g(a))$, in which $\xi$ is in the range of $[a,b]$.

    So, by a few rearrangements,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=g(b)(F(b)-F(\xi))+g(a)(F(\xi)-F(a))$, in which $\xi$ is in the range of $[a,b]$..

    Then, plug $(*)$ in(By the way, the integral variable does not matter in the difinite integral, so we can substitude $u$ with $x$),

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx = g(b)\int_{\xi}^{b}f(x)dx+g(a)\int_{a}^{\xi}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

    Finally, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.


  Okay, and there is a last thing which we need to know to prove these two discriminant convergence. It's Cauchy's Convergence Test in the form of function. I will state it here but not prove it.

$\displaystyle \lim_{x\to +\infty}f(x)$ is convergent  $\displaystyle \Leftrightarrow$  $\displaystyle \forall \epsilon > 0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|f(x_{1})-f(x_{2})\right|<\epsilon$.


Proof of Dirac Discriminant Convergence.

  Based on the assumptions, set $\displaystyle \left|F(x)\right|=\left|\int_{a}^{x}f(u)du\right| \le M\tag{$\blacktriangle$}$, in which $\displaystyle x$ is in the range of $[a,+\infty)$ and $\displaystyle M > 0$.

  And,

$\displaystyle \because g(x)$ is monotonic and goes to $0$ when $\displaystyle x \to +\infty$.

     $\displaystyle \therefore \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}\tag{$1$}$.

  According to the difinition of infinite integral, $\displaystyle \int_{a}^{+\infty}f(x)g(x)dx \Longleftrightarrow \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$.

  If we want to prove,

$\displaystyle \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent.

  based on the Cauchy's Convergence Test, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X>0,\forall x_{1}>X,x_{2}>X,\left|\int_{a}^{x_{2}}f(x)g(x)dx-\int_{a}^{x_{1}}f(x)g(x)dx\right| =\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|< \epsilon$.

  So, for all $\epsilon > 0$,

  In the $(1)$, we set $\displaystyle \bar{\epsilon}=\frac{\epsilon}{4M}$, and get $\displaystyle \exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}=\frac{\epsilon}{4M}\tag{$2$}$ (In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$)

  for all $\displaystyle x_{1}>\bar{X}$ and $\displaystyle x_{2}>\bar{X}$,

  Using the second mean value theorem for integral,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| = \left|g(x_{1})\int_{x_{1}}^{\xi}f(x)dx+g(x_{2})\int_{\xi}^{x2}f(x)dx\right|\tag{$3$}$.

  Using absolute value inequality,

$\displaystyle (3) \le \left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$4$}$

  And that is,

$\displaystyle (4)=\left|g(x_{1})\right|\left|\int_{a}^{\xi}f(x)dx-\int_{a}^{x_{1}}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{a}^{x_{2}}f(x)dx-\int_{a}^{\xi}f(x)dx\right|$.

  Using absolute value inequality again, and according to $(\blacktriangle)$ and $(2)$,

$\displaystyle (4) \le 2M(\left|g(x_{1})\right| + \left|g(x_{2})\right|) < 2M*2\bar{\epsilon}=\epsilon$.

  Thus, by summing up, $\displaystyle \forall \epsilon >0,\exists X=\bar{X},\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| < \epsilon$, the theorem is proved.


Proof of Abel Discriminant Convergence.

The proof of Abel Discriminant Convergence is almost the same to the proof of Dirac Discriminant Convergence, so I will omit some trivial processes.

  Based on the assumptions, let's set $\displaystyle \left|g(x)\right|\le M\tag{$\blacktriangle$}$, for $x$ in the range of $[a,+\infty)$, and in which $M > 0$.

$\displaystyle \because \int_{a}^{+\infty}f(x)dx$ is convergent

$\displaystyle \therefore \lim_{b \to +\infty}\int_{a}^{b}f(x)dx$ exists.

  According to the Cauchy's Convergence Test,

$\displaystyle \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{a}^{x_{1}}f(x)dx-\int_{a}^{x_{2}}f(x)dx\right|=\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}\tag{$1$}$

  If we want to prove that $\displaystyle \lim_{b \to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$.

  So, for all $\displaystyle \epsilon > 0$,

  In $(1)$. let's set $\displaystyle \bar{\epsilon} = \frac{\epsilon}{2M}$, then $\displaystyle \exists \bar{X}(\bar{\epsilon}), \forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}=\frac{\epsilon}{2M}\tag{$2$}$(In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$).

  For $\displaystyle \forall x_{1}>\bar{X},\forall x_{2}>\bar{X}$, using the second mean value theorem for integral and absolute value inequality,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|\le\left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$3$}$, in which $\xi$ is in the range of $[x_{1},x_{2}]$.

  Combined with the $(\blacktriangle)$ and $(2)$,

$\displaystyle (3)\le 2M\bar{\epsilon}=\epsilon$

  Thus, by summing up, $\displaystyle \forall \epsilon > 0,\exists X = \bar{X},\forall x_{1} > X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$, the theorem is proved.

[Mathematics][BJTU][Calculus]Detailed explanations and proofs of the Dirac-Abel Discriminant Methods which deal with the conditional convergence的更多相关文章

  1. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  2. 10-free-must-read-books-machine-learning-data-science

    Spring. Rejuvenation. Rebirth. Everything’s blooming. And, of course, people want free ebooks. With ...

  3. 2015,2016 Open Source Yearbook

    https://opensource.com/yearbook/2015 The 2015 Open Source Yearbook is a community-contributed collec ...

  4. MIT课程

    8.02  Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...

  5. [ZZ] Understanding 3D rendering step by step with 3DMark11 - BeHardware >> Graphics cards

    http://www.behardware.com/art/lire/845/ --> Understanding 3D rendering step by step with 3DMark11 ...

  6. 【转】简单的 Laravel 5 REST API

    Introduction Almost all successful internet based companies have APIs. API is an acronym for Applica ...

  7. books

    <<learning opencv>>,   布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者),   这本书一定要第二版的,因为第二版 ...

  8. Command Line-Version (SetACL.exe) – Syntax and Description

    For a quick start, tell SetACL the following: Object name (-on): This is the path to the object SetA ...

  9. arm-none-eabi-gcc install

    Zephyr除了官方的编译工具,还有第三方工具 arm-none-eabi-gcc . This PPA is an alternative to toolchain released at http ...

随机推荐

  1. linux cmake安装方法

    linux cmake安装方法 OpenCV 2.2以后的版本需要使用Cmake生成makefile文件,因此需要先安装cmake:还有其它一些软件都需要先安装cmake 1.在linux环境下打开网 ...

  2. egret inspect插件安装失败处理方法

    egret inspect插件安装失败处理方法谷歌浏览器版本太高不兼容了 换个69就行了 然后点击加载已解压的扩展程序选择EgretInspector-v2.5.5这个文件夹 就安装成功了 重启下浏览 ...

  3. 小白学 Python(23):Excel 基础操作(上)

    人生苦短,我选Python 前文传送门 小白学 Python(1):开篇 小白学 Python(2):基础数据类型(上) 小白学 Python(3):基础数据类型(下) 小白学 Python(4):变 ...

  4. [ISE使用] 使用ISE的过程中,遇到过的一些“软件上的问题”

    1.planahead打不开了. PlanAhead替代文件rdiArgs.bat的下载链接如下: http://www.eevblog.com/forum/microcontrollers/guid ...

  5. JVM集训-----内存结构

    一.程序计数器/PC寄存器 (Program Counter Registe) 用于保存当前正在执行的程序的内存地址(下一条jvm指令的执行地址),由于Java是支持多线程执行的,所以程序执行的轨迹不 ...

  6. js对象的sessionStorage,判断对象相等,判断是否包含某属性

    一,storage storage只能存储字符串的数据,对于JS中常用的数组或对象却不能直接存储 因此需要借JSON进行类型转化来存储: let obj = { name:'Jim' } sessio ...

  7. LaravelS - 基于Swoole加速Laravel/Lumen

    LaravelS LaravelS是一个胶水项目,用于快速集成Swoole到Laravel或Lumen,然后赋予它们更好的性能.更多可能性.Github 特性 内置Http/WebSocket服务器 ...

  8. Python练习100题

    Python练习100题 题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? #Filename:001.py cnt = 0#count the sum of res ...

  9. Oracle数据库索引

    Oracle数据库索引 在关系数据库中,索引是一种与表有关的数据库结构,它可以使对应于表的SQL语句执行得更快.索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容. 对于数据库来说,索 ...

  10. Hadoop运行模式

    Hadoop运行模式 (1)本地模式(默认模式): 不需要启用单独进程,直接可以运行,测试和开发时使用. 即在一台机器上进行操作,仅为单机版. 本地运行Hadoop官方MapReduce案例 操作命令 ...