求1-n最长边最小的路径。

最短路变形。dis值向后延申的方式是:$$dis[j]=min(dis[j],max(dis[i],w(i,j))$$

显然满足dijkstra贪心的选择方式。spfa也当然可以用。

写上三种方式,就当是模板好了。

spfa

复杂度:\(O(kE)/O(VE)\)

spfa的主要思想是不断松弛。注意spfa的更新策略,先更新\(dis\)值,再根据\(vis\)判断是否丢到\(queue\)中。

#include <bits/stdc++.h>
const int maxn = 100000;
const int maxm = 200000; using namespace std; int n, m; int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0; void addEdge(int a, int b, int c)
{
to[cnt] = b; w[cnt] = c;
nex[cnt] = head[a]; head[a] = cnt++;
to[cnt] = a; w[cnt] = c;
nex[cnt] = head[b]; head[b] = cnt++;
} int vis[maxn + 10];
int dis[maxn + 10]; void spfa()
{
queue<int> q;
dis[1] = 0;
q.push(1);
vis[1] = 1;
while (!q.empty())
{
int x = q.front(); q.pop();
vis[x] = 0;
// printf("current node: %d %d\n", x, dis[x]);
for (int i = head[x]; i != -1; i = nex[i])
{
int l = to[i];
if (max(dis[x], w[i]) < dis[l])
{
dis[l] = max(dis[x], w[i]);
if (!vis[l])
{
q.push(l);
vis[l] = 1;
}
}
}
}
} int main()
{
scanf("%d%d", &n, &m); memset(head, -1, sizeof(head));
for (int i = 1, a, b, c; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
} memset(vis, 0, sizeof(vis));
memset(dis, 0x3f, sizeof(dis)); spfa(); printf("%d\n", dis[n]); return 0;
}

dijkstra

会超时。

复杂度:\(O(V^2)\)

dijkstra的主要思想是一共\(V\)次贪心的选择当前未确定点中\(dis\)值最小的那一个确定。

#include <bits/stdc++.h>
const int inf = 0x3f3f3f3f;
const int maxn = 100000;
const int maxm = 200000; using namespace std; int n, m; int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0; void addEdge(int a, int b, int c)
{
to[cnt] = b; w[cnt] = c;
nex[cnt] = head[a]; head[a] = cnt++;
to[cnt] = a; w[cnt] = c;
nex[cnt] = head[b]; head[b] = cnt++;
} int done[maxn + 10];
int dis[maxn + 10]; void dijkstra()
{
dis[1] = 0;
for (int i = 1; i <= n; i++)
{
int x = 0, mmin = inf;
for (int j = 1; j <= n; j++)
{
if (!done[j] && dis[j] < mmin)
mmin = dis[x = j];
}
done[x] = 1;
for (int j = head[x]; j != -1; j = nex[j])
{
int l = to[j];
dis[l] = min(dis[l], max(dis[x], w[j]));
}
}
} int main()
{
scanf("%d%d", &n, &m); memset(head, -1, sizeof(head));
for (int i = 1, a, b, c; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
} memset(done, 0, sizeof(done));
memset(dis, 0x3f, sizeof(dis)); dijkstra(); printf("%d\n", dis[n]); return 0;
}

heap_dijkstra

复杂度(stl优先队列实现,由于每条边最多被访问一次,堆中最多会有\(E\)个节点):\(O(ElogE)\),当图趋于完全图时,复杂度趋于\(O(V^2logV)\),应当使用一般实现的dijkstra算法。

堆优化dijkstra,主要思想是利用堆加速每一次值最小(未确定)的点的选择。实际实现略有不同,所以复杂度并非\(O(VlogV)\)。

#include <bits/stdc++.h>
const int inf = 0x3f3f3f3f;
const int maxn = 100000;
const int maxm = 200000; using namespace std; int n, m; int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0; void addEdge(int a, int b, int c)
{
to[cnt] = b; w[cnt] = c;
nex[cnt] = head[a]; head[a] = cnt++;
to[cnt] = a; w[cnt] = c;
nex[cnt] = head[b]; head[b] = cnt++;
} struct tNode
{
int d, u; // estimated dis, id of vertex
tNode(int dd, int uu): d(dd), u(uu){}
bool operator < (const tNode &y) const
{
return d > y.d;
}
}; int done[maxn + 10];
int dis[maxn + 10]; void heap_dijkstra()
{
priority_queue<tNode> q;
dis[1] = 0;
q.push(tNode(0, 1));
while (!q.empty())
{
tNode x = q.top(); q.pop();
int u = x.u;
if (done[u])
continue;
done[u] = 1;
for (int i = head[u]; i != -1; i = nex[i])
{
int l = to[i];
if (dis[l] > max(dis[u], w[i]))
{
dis[l] = max(dis[u], w[i]);
q.push(tNode(dis[l], l));
}
}
}
} int main()
{
scanf("%d%d", &n, &m); memset(head, -1, sizeof(head));
for (int i = 1, a, b, c; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
} memset(done, 0, sizeof(done));
memset(dis, 0x3f, sizeof(dis)); heap_dijkstra(); printf("%d\n", dis[n]); return 0;
}

CCF-CSP题解 201703-4 地铁修建的更多相关文章

  1. CCF CSP 201703-4 地铁修建

    博客中的文章均为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201703-4 地铁修建   问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n ...

  2. CCF CSP 201703

    CCF CSP 2017·03 做了一段时间的CCF CSP试题,个人感觉是这样分布的 A.B题基本纯暴力可满分 B题留心数据范围 C题是个大模拟,留心即可 D题更倾向于图论?(个人做到的D题基本都是 ...

  3. ccf 201703-4 地铁修建(95)(并查集)

    ccf 201703-4 地铁修建(95) 使用并查集,将路径按照耗时升序排列,依次加入路径,直到1和n连通,这时加入的最后一条路径,就是所需要修建的时间最长的路径. #include<iost ...

  4. CSP 201703-4 地铁修建 最小生成树+并查集

    地铁修建   试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力, ...

  5. CSP 201703-4 地铁修建【最小生成树+并查集】

    问题描述 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市 ...

  6. CCF(地铁修建):向前星+dijikstra+求a到b所有路径中最长边中的最小值

    地铁修建 201703-4 这题就是最短路的一种变形,不是求两点之间的最短路,而是求所有路径中的最长边的最小值. 这里还是使用d数组,但是定义不同了,这里的d[i]就是表示从起点到i的路径中最长边中的 ...

  7. CCF CSP 201412-4 最优灌溉

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201412-4 最优灌溉 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖 ...

  8. CCF CSP 201703-3 Markdown

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201703-3 Markdown 问题描述 Markdown 是一种很流行的轻量级标记语言(l ...

  9. CCF CSP 201312-3 最大的矩形

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201312-3 最大的矩形 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i( ...

  10. CCF CSP 201609-3 炉石传说

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201609-3 炉石传说 问题描述 <炉石传说:魔兽英雄传>(Hearthston ...

随机推荐

  1. 性能测试:深入理解线程数,并发量,TPS,看这一篇就够了

    并发数,线程数,吞吐量,每秒事务数(TPS)都是性能测试领域非常关键的数据和指标. 那么他们之间究竟是怎样的一个对应关系和内在联系? 测试时,我们经常容易将线程数等同于表述为并发数,这一表述正确吗? ...

  2. Nginx热部署 平滑升级 日志切割

    1.重载 修改nginx配置文件之后,在不影响服务的前提下想加载最新的配置,就可以重载配置即可. 操作如下: 1)修改nginx配置文件 2)nginx -t     检查nginx文件语法是否有误 ...

  3. xpath选择兄弟节点、返回上一级和选择多个属性

    本文链接:https://blog.csdn.net/ZincZhang/article/details/80248297选择兄弟节点选择前N位的div标签 preceding-sibling::di ...

  4. 2019牛客暑期多校训练营(第九场) E All men are brothers

    传送门 知识点:并查集+组合数学 并查集合并操作可以理解为使得两个集合的人互相成为朋友,也就是两个集合并在了一起,答案是要求从所有人中挑出四个互相不是朋友的四个人,比较基础的组合数学知识,但因为每个集 ...

  5. .net core 学习 读取配置文件

    在空项目中是没有配置文件的,首先要新建一个,配置文件内容如下,下面来读取各个内容 { "ConnectionStrings": { "DefaultConnection& ...

  6. Select2 禁用option

    禁用 $("#priceGroupType option[value='1']").prop('disabled', true); $("#priceGroupType& ...

  7. Scala函数式编程(四)函数式的数据结构 上

    这次来说说函数式的数据结构是什么样子的,本章会先用一个list来举例子说明,最后给出一个Tree数据结构的练习,放在公众号里面,练习里面给出了基本的结构,但代码是空缺的需要补上,此外还有预留的test ...

  8. Docker harbor 安装和基础操作

    目录 简介 离线安装 配置文件 安装 查看 访问测试 及 简单操作 创建一个用户 创建一个测试仓库 创建测试仓库 测试上传和下载镜像 上传 下载镜像测试 简介 Docker容器应用的开发和运行离不开可 ...

  9. shell脚本中的逻辑判断、文件目录属性判断、if特殊用法、case判断

    7月12日任务 20.5 shell脚本中的逻辑判断20.6 文件目录属性判断20.7 if特殊用法20.8/20.9 case判断 20.5 shell脚本中的逻辑判断 逻辑判断在shell中随处可 ...

  10. socket实现一个简单的echo服务

    服务端的实现: public class EchoServer{ //创建一个serverSocket private final ServerSocket serverSocket; //创建一个构 ...