线段树离散化 unique + 二分查找 模板 (转载)
离散化,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。
通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。例如:
原数据:1,999,100000,15;处理后:1,3,4,2;
原数据:{100,200},{20,50000},{1,400};
处理后:{3,4},{2,6},{1,5};
离散化是程序设计中一个常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中,只考虑需要用的值。离散化可以改进一个低效的算法,甚至实现根本不可能实现的算法。要掌握这个思想,必须从大量的题目中理解此方法的特点。例如,在建造线段树空间不够的情况下,可以考虑离散化。
数据的离散化
有些数据本身很大, 自身无法作为数组的下标保存对应的属性。如果这时只是需要这堆数据的相对属性, 那么可以对其进行离散化处理。当数据只与它们之间的相对大小有关,而与具体是多少无关时,可以进行离散化。
例 1:
91054 与 52143的逆序对个数相同。
例 2:
设有4个数: 1234567、123456789、12345678、123456
排序:123456<1234567<12345678<123456789
=>1<2<3<4
那么这4个数可以表示成:2、4、3、1
例 3:
比如给你n个数:98998988,32434234,433234556,32434234,8384733,……
让你统计其中每个数出现的次数,传统的做法有好几种,比如一遍一遍的扫过去,比对叠加,这样算法的效率是O(n2),效率低下;
再比如先排序,再统计连续的相同的个数,这里的效率已经有所提高了,不过假如上面的数据是一道线段树的题目给出的数据,那么建树需要的空间开销实在是太大了。
再改进一下,采用哈希的方法,开一个大于其中最大数的数组并初始化为零,O(n)扫一下,在该数字对应的下标的元素上+1,如果对于比较小的数字还好说,但是对于上面出现的数字直接采用哈希对空间的开销是十分大的也是没有必要的,所以这里用到了数据的离散化。
首先将数字排序:32434234,32434234,43324556,8384733,98998988
去重后给予其对应的索引: 0,0,1,2,3 (一一映射)
分别对应每个数,就可以简化很多操作,减少了很多不必要的资源开销。
除了对于较大整数需要使用离散化之外,对于一些需要使用整型数据结构,但给出的数据却是小数的也可以使用离散化,将其索引为整数就可以了。
那么可以总结出离散化的步骤:
1、排序
2、去重
3、索引
为了简化代码,我们采用STL算法离散化:
- /*
- 用离散化之前先用 sort()排序,再用 unique() 进行去重
- 用 lower_bound() 或者 upper_bound() 进行二分查找位置
- */
- int a[n], b[n], sub[n];
- // a[n]是即将被离散化的数组,b[n]是a[n]的副本,sub用于排序去重后提供离散化后的值
- sort(sub, sub + n);
- int size = unique(sub, sub + n) - sub;
- for(int i = 0; i < n; i++)
- a[i] = lower_bound(sub, sub + size, a[i]) - sub;
- //即a[i]为b[i]离散化后对应的值
1、unique()函数————返回值是去重之后的长度
unique() 的作用是“去掉”容器中相邻元素的重复元素(不一定要求数组有序),即去重
它会把重复的元素添加到容器末尾(所以数组大小并没有改变),而返回值是去重之后的尾地址
如果要删去重复元素,可以把尾巴删去即可(或者直接定义新的长度!)
例如:
- sz=unique(b+1,b+n+1)-(b+1);//减去的(b+1) 及 a 是起始地址
- sz=unique(a,a+n)-a;
2、二分查找——lower_bound()、upper_bonud()
- /*
- upper_bound(i) 返回的是键值为i的元素可以插入的最后一个位置(上界)
- lowe_bound(i) 返回的是键值为i的元素可以插入的位置的第一个位置(下界)。
- */
怎么理解呢,举例:
在升序的set里面
set里没有元素i的时候,两个元素的返回值是一样的。
1 2 4 5 这个序列,upp(3)和low(3)都返回位置2(下标)
如果只有一个元素i,low返回那个元素的位置,而upp返回那个元素的位置的后一个位置。
1 2 4 5 这个序列upp(2)返回下标2而low(2)返回下标1
多个元素i,low返回那个元素的位置,upp返回那多个元素中的最后一个的后一个位置。
1 2 2 4 5 这个序列 upp(2)返回下标3的位置,low(2)返回下标1的位置。
!!!!!!!!!!!!!
特别注意:举例在一个升序的容器里,如果所有元素都大于i则,upp和low都返回begin。都小于i则返回end(越界了)。
最后再来一句,看是否好理解一些。
terator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。
iterator upper_bound( const key_type &key ):返回一个迭代器,指向键值<=key的最后一个元素的后一个元素。
★降序排列的容器:
iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值<= key的第一个元素。
iterator upper_bound( const key_type &key ):返回一个迭代器,指向键值>=key的最后一个元素的后一个元素。
例如:
- bool cmp(int a,int b)
- {
- return a<b;
- }
- int main()
- {
- int a[10]={2,7,1,4,4,6};
- sort(a,a+6,cmp); // 去重之前先排序
- int m=unique(a,a+6)-a; // 去重
- cout<<m<<endl; // 输出去重之后的长度
- for(int i=0;i<m;i++)
- cout<<a[i]<<' '; // 输出去重之后的数
- cout<<endl;
- int tem=upper_bound(a,a+6,4)-a;
- //按从小到大 4 最多能插入数组 a 的哪个位置
- int p=lower_bound(a,a+6,4)-a;
- //按从小到大,4最少能插入数组 a 的哪个位置
- cout<<tem<<endl;
- cout<<p<<endl;
- }
- 输出
- 5
- 1 2 4 6 7
- 3
- 2
--------------------- 本文来自 __zcy 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/zcy19990813/article/details/81141035?utm_source=copy
线段树离散化 unique + 二分查找 模板 (转载)的更多相关文章
- HDU-4614 Vases and Flowers(线段树区间更新+二分查找)
http://acm.hdu.edu.cn/showproblem.php?pid=4614 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...
- hdu1542 矩形面积并(线段树+离散化+扫描线)
题意: 给你n个矩形,输入每个矩形的左上角坐标和右下角坐标. 然后求矩形的总面积.(矩形可能相交). 题解: 前言: 先说说做这道题的感受: 刚看到这道题顿时就懵逼了,几何 烂的渣渣.后来从网上搜题解 ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- [UESTC1059]秋实大哥与小朋友(线段树, 离散化)
题目链接:http://acm.uestc.edu.cn/#/problem/show/1059 普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- D - Mayor's posters(线段树+离散化)
题目: The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campai ...
- HDU5124:lines(线段树+离散化)或(离散化思想)
http://acm.hdu.edu.cn/showproblem.php?pid=5124 Problem Description John has several lines. The lines ...
随机推荐
- android 基于wifi模块通信开发
这篇文章主要是我写完手机与wifi模块通信后所用来总结编写过程的文章,下面,我分几点来说一下编写的大概流程. 一.拉出按钮控件并设置它的点击事件 二.设置wifi权限 三.打开和关闭wifi 四.扫描 ...
- kubernetes对接第三方认证
kubernetes对接第三方认证 kubernetes离线安装包地址 概述 本文介绍如何使用github账户去关联自己kubernetes账户.达到如下效果: 使用github用户email作为ku ...
- go 学习之路(二)
一.文件名 关键字 标识符 所有go源码都以.go结尾 标识符以字母或下划线开头,大小写敏感 a.boy b.Boy c.a+b d.0boy e._boy f.=_boy g._ 以上变量c.d.f ...
- 用lilypond实现模进
基本练习通常是一个两个简单动作在不同位置上反复操练,所以打谱的时候用模进必不可少. 所谓模进,就是把一个片段平行地转移到其他音高上进行.比如 do re mi fa 可以把从do开始改成从so开始,那 ...
- 二叉查找树(查找、插入、删除)——C语言
二叉查找树 二叉查找树(BST:Binary Search Tree)是一种特殊的二叉树,它改善了二叉树节点查找的效率.二叉查找树有以下性质: (1)若左子树不空,则左子树上所有节点的值均小于它的根节 ...
- MobaXterm:远程终端登录软件封神选手
提到SSH.Telnet等远程终端登录,我相信很多人想到的都是PuTTY PuTTY通常用于Windows,但实际上可以多平台运行,因此不表达为"Windows下的远程终端登录" ...
- 2019牛客多校训练第三场H.Magic Line(思维)
题目传送门 大致题意: 输入测试用例个数T,输入点的个数n(n为偶数),再分别输入n个不同的点的坐标,要求输出四个整数x1,y1,x2,y2,表示有一条经过点(x1,y1),(x2,y2)的直线将该二 ...
- 算法与数据结构基础 - 二叉查找树(Binary Search Tree)
二叉查找树基础 二叉查找树(BST)满足这样的性质,或是一颗空树:或左子树节点值小于根节点值.右子树节点值大于根节点值,左右子树也分别满足这个性质. 利用这个性质,可以迭代(iterative)或递归 ...
- egg-sequelize-ts 插件
egg-sequelize-ts plugin 目的 (Purpose) 能让使用 typescript 编写的 egg.js 项目中能够使用 sequelize方法,并同时得到egg.js所赋予的功 ...
- 减谈迷宫C++
今天老师让做了个迷宫问题,我一看到就发现和我之前写过的一个程序是一样 的,但是在后来编写的时候有一个地方搞错了,最后下课了我还是没有正确的编写好,然后今天回来之后自己有看了一下,现在已经解决了. #i ...