1014 装箱问题

2001年NOIP全国联赛普及组

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
 查看运行结果
 
 
题目描述 Description

有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)。

要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

输入描述 Input Description

一个整数v,表示箱子容量

一个整数n,表示有n个物品

接下来n个整数,分别表示这n 个物品的各自体积

输出描述 Output Description

一个整数,表示箱子剩余空间。

样例输入 Sample Input

24

6

8

3

12

7

9

7

样例输出 Sample Output

0

#include<iostream>
#include<cstdio>
using namespace std; bool f[];//f[i]箱子还剩i时的最优解
int a[];
int v,n; int main()
{
f[]=;
scanf("%d%d",&v,&n);
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
}
for(int i=;i<=n;++i)
{
for(int j=v;j>=;--j)
{
if(f[j]&&j+a[i]<=v)//DP
{
f[j+a[i]]=;//能装到的体积就打个1
}
}
}
for(int j=v;j>=;--j)
{
if(f[j])
{
cout<<v-j<<endl;
return ;
}
}
}

1014 装箱问题 CODE[VS]的更多相关文章

  1. wikioi 1014 装箱问题

    来源:http://wikioi.com/problem/1014/ 1014 装箱问题 29人推荐 收藏 发题解 提交代码 报错 题目描写叙述 输入描写叙述 输出描写叙述 例子输入 例子输出 提示 ...

  2. 【wikioi】1014 装箱问题

    题目链接 算法:动态规划(01背包) 01背包思想:依次对待某一物体,考虑是否放入容量为V的背包中 用f[V]来表示容量为V的背包的最大价值,则决策是 f[V] = max{f[V], f[V-v[i ...

  3. Codevs 1014 装箱问题

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  4. wikioi 1014 装箱问题(背包)

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  5. codevs 1014 装箱问题 2001年NOIP全国联赛普及组

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  6. 【动态规划】【零一背包】CODEVS 1014 装箱问题 2001年NOIP全国联赛普及组

    #include<cstdio> #include<algorithm> using namespace std; ],f[]; int main() { scanf(&quo ...

  7. 【codevs1014/1068】背包型动态规划

    分析: 状态转移方程: v[j]=max(v[j],v[j-a[i]]+a[i]) (j ← tol downto a[i]) /* 作者:flipped 题目:p1014 装箱问题 */ #incl ...

  8. javaCore分析示例(转)

    当两个或多个线程彼此形成循环依赖关系时,就出现了死锁.例如,如果线程 A 处于等待线程 B 的等待状态,而同时线程 B 处于等待线程 A 的等待状态,则出现了死锁.一旦形成此情况,线程 A 和线程 B ...

  9. [NOIP复习]第三章:动态规划

    一.背包问题 最基础的一类动规问题.相似之处在于给n个物品或无穷多物品或不同种类的物品,每种物品仅仅有一个或若干个,给一个背包装入这些物品,要求在不超出背包容量的范围内,使得获得的价值或占用体积尽可能 ...

随机推荐

  1. OI/ACM最全卡常大招

    NO.10: 循环展开: 在缓存和寄存器允许的情况下一条语句内大量的展开运算会刺激 CPU 并发(蛤?这是个什么原理,算了,反正写了没坏处就这么写吧) NO.9: 特殊运算优化:(或许这真的没用) 取 ...

  2. Kubernetes容器集群管理环境 - Prometheus监控篇

    一.Prometheus介绍之前已经详细介绍了Kubernetes集群部署篇,今天这里重点说下Kubernetes监控方案-Prometheus+Grafana.Prometheus(普罗米修斯)是一 ...

  3. Python 与数据库交互

    安装:pip3 install pymysql 引入模块在python3里:from pymysql import * 使用步骤:1.创建Connection对象,用于建立与数据库的连接,创建对象调用 ...

  4. 完全零基础在Linux中安装 JDK

    完全零基础在Linux中安装 JDK 总体思路:先确定没有Java程序了 — 然后创建相应路径文件夹 — 下载JDK — 解压到当前路径 — 自定义文件名称 — 配置环境变量 — 检查是否安装成功 第 ...

  5. MySQL数据库基本知识(理论总结)

    定义:数据库就是一个文件系统,通过sql语句来获取数据 关系型数据库:关系型数据库存放的是实体时间的关系,在数据库层面来看就是存放的是表和表之间的关联关系 常见的关系型数据库   MySQL    D ...

  6. 从Maven私服获取依赖

    通过Internet直接从Maven公用仓库获取依赖包是默认配置.不过对于中国软件公司来讲,访问这些公用仓库通常较慢,对于一些管理严格的不能直接上网的软件公司来讲,这更加是不可能的.Maven项目可以 ...

  7. postman-使用教程

    postman postman是一款非常方便的API测试工具,可以帮我们快速的发起HTTP请求,下面记录一下postman的基本使用. postman安装 postman下载地址 下载安装打开之后就是 ...

  8. windows server2012 nVME和网卡等驱动和不识别RAID10问题

    安装2012---不识别M.2 nVME,下官方驱动,注入到系统里 缺多驱动---用ITSK万能驱动添加:|Win8012R2.x64(可解决不支持操作系统,win10与server2012R2通用) ...

  9. 大数据学习之旅2——从零开始搭hadoop完全分布式集群

    前言 本文从零开始搭hadoop完全分布式集群,大概花费了一天的时间边搭边写博客,一步一步完成完成集群配置,所以相信大家按照本文一步一步来完全可以搭建成功.需要注意的是本文限于篇幅和时间的限制,也是为 ...

  10. C语言连接mysql,用GCC编译

    1. main.c文件内容如下 #include <stdlib.h>#include <stdio.h>#include <winsock.h>#include ...