lightoj 1095 - Arrange the Numbers(dp+组合数)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095
题解:其实是一道简单的组合数只要推导一下错排就行了。在这里就推导一下错排
dp[i]=(i-1)*dp[i-2](表示新加的那个数放到i-1中的某一个位置然后那个被放位置的数放在i这个位置就是i-2的错排)+(i-1)*dp[i-1](表示新加的那个数放到i-1中的某一个位置然后用那个位置被占的数代替i这个位置的数就是i-1的错排)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define mod 1000000007
using namespace std;
typedef long long ll;
const int M = 1e3 + 10;
ll dp[M];
ll up[M] , down[M];
ll inv(ll a) {
return a == 1 ? 1 : (ll)(mod - mod / a) * inv(mod % a) % mod;
}
void fk() {
dp[0] = 1 , dp[1] = 0 , dp[2] = 1;
for(int i = 3 ; i < M ; i++) dp[i] = (i - 1) * ((dp[i - 1] + dp[i - 2]) % mod) , dp[i] %= mod;
}
ll C(ll n , ll m)
{
if(m < 0)return 0;
if(n < m)return 0;
if(m > n-m) m = n-m;
ll up = 1, down = 1;
for(ll i = 0 ; i < m ; i++){
up = up * (n-i) % mod;
down = down * (i+1) % mod;
}
return up * inv(down) % mod;
}
int main() {
fk();
int t , Case = 0;
scanf("%d" , &t);
while(t--) {
int n , m , k;
scanf("%d%d%d" , &n , &m , &k);
ll ans = 0;
ll gg = C(m , k);
up[0] = 1 , down[0] = 1;
for(int i = 1 ; i <= (n - m) / 2 ; i++) up[i] = up[i - 1] * ((n - m) - i + 1) % mod , down[i] = down[i - 1] * i % mod;
for(int i = (n - m) / 2 + 1 ; i <= (n - m) ; i++) up[i] = up[(n - m) - i] , down[i] = down[(n - m) - i];
for(int i = n - k ; i >= (m - k) ; i--) {
ans += dp[i] * (up[n - k - i] * (inv(down[n - k - i]) % mod) % mod);
ans %= mod;
}
ans *= gg;
ans %= mod;
printf("Case %d: %lld\n" , ++Case , (ans + mod) % mod);
}
return 0;
}
lightoj 1095 - Arrange the Numbers(dp+组合数)的更多相关文章
- LightOJ - 1095 - Arrange the Numbers(错排)
链接: https://vjudge.net/problem/LightOJ-1095 题意: Consider this sequence {1, 2, 3 ... N}, as an initia ...
- light oj 1095 - Arrange the Numbers排列组合(错排列)
1095 - Arrange the Numbers Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N ...
- Light oj 1095 - Arrange the Numbers (组合数学+递推)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题意: 给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定 ...
- LightOJ - 1246 Colorful Board(DP+组合数)
http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...
- Codeforces 747F Igor and Interesting Numbers DP 组合数
题意:给你一个数n和t,问字母出现次数不超过t,第n小的16进制数是多少. 思路:容易联想到数位DP, 然而并不是...我们需要知道有多少位,在知道有多少位之后,用试填法找出答案.我们设dp[i][j ...
- Light OJ 1095 Arrange the Numbers(容斥)
给定n,m,k,要求在n的全排列中,前m个数字中恰好有k个位置不变,有几种方案?首先,前m个中k个不变,那就是C(m,k),然后利用容斥原理可得 ans=ΣC(m,k)*(-1)^i*C(m-k,i) ...
- LightOJ 1095 Arrange the Numbers-容斥
给出n,m,k,求1~n中前m个正好有k个在原来位置的种数(i在第i个位置) 做法:容斥,先选出k个放到原来位置,然后剩下m-k个不能放到原来位置的,用0个放到原来位置的,有C(m-k,0)*(n-k ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
随机推荐
- 如何确定FPGA电路中DDR4的Speed bin 是否兼容?
原创 by DeeZeng DDR4 是否兼容,拿更快速度的DDR4,是否可以不改FPGA工程,直接换料就能直接用? 实际工作中,经常会碰到因为DDR3/4 或其他料件换料了,需要判断FPGA工程中I ...
- JDK的命令行工具系列 (二) javap、jinfo、jmap
javap: 反编译工具, 可用来查看java编译器生成的字节码 参数摘要: -help 帮助 -l 输出行和变量的表 -public 只输出public方法和域 -protected 只输出publ ...
- JAVA并发之阻塞队列浅析
背景 因为在工作中经常会用到阻塞队列,有的时候还要根据业务场景获取重写阻塞队列中的方法,所以学习一下阻塞队列的实现原理还是很有必要的.(PS:不深入了解的话,很容易使用出错,造成没有技术深度的样子) ...
- LongAdder和AtomicLong性能对比
jdk1.8中新原子操作封装类LongAdder和jdk1.5的AtomicLong和synchronized的性能对比,直接上代码: package com.itbac.cas; import ja ...
- JSON在线格式化 jsoneditor使用
const placeholder = { string: 'hello world!', boolean: true, color: '#6c928c', number: 123, null: nu ...
- Chrome谷歌浏览器实用插件
总结整理了一下个人平时常用的谷歌浏览器插件 Adblock Plus 广告拦截 uBlock Origin Chrono 下载管理器 Tampermonkey 油猴子(各种强大的脚本,强烈推荐) F ...
- win10和浏览器快捷键
1. Win10快捷键[Win+↑/↓/←/→] 将当前窗口按比例固定到屏幕的四个边角,如左上.右上.左下.右下.[Win+1/2/3…] 按顺序打开任务栏上的已固定程序(不包括第一个“任务视图”按钮 ...
- 一份程序猿单词列表(updating)
以下单词是个人平时阅读英文文档时遇到的一些“生”单词,该文档将持续更新,可以持续关注https://github.com/hylinux1024/word-list-for-programmer hi ...
- 登录cookies
cookie Cookie 是指某些网站服务器为了辨别用户身份和进行Session跟踪,而储存在用户浏览器上的文本文件,Cookie可以保持登录信息到用户下次与服务器的会话./p> cookie ...
- idea设置docker远程插件
简介 docker都是通过命令来操作容器,使用idea插件可以减少重复命令输入等. 使用步骤 Idea内安装插件 打开Idea,Preferences | Plugins 进入插件安装界面,在搜索框中 ...