# 导包
import numpy as np

排序

.sort()

x = np.arange(16)   # array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
# 随机打乱顺序,且x顺序改变
np.random.shuffle(x) # array([13, 2, 6, 7, 11, 10, 3, 4, 8, 0, 5, 1, 9, 14, 12, 15])
np.sort(x)
x # array([13, 2, 6, 7, 11, 10, 3, 4, 8, 0, 5, 1, 9, 14, 12, 15])
x.sort()
x # array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
X = np.random.randint(10, size=(4,4))
# 每列按大小排序
np.sort(X, axis=0)
# 每行按大小排序
np.sort(X, axis=1)

使用索引

.argsort()

x = np.arange(16)
np.random.shuffle(x)
x # array([ 5, 13, 0, 10, 2, 14, 1, 3, 11, 8, 12, 9, 7, 4, 6, 15])
np.argsort(x) # array([ 2, 6, 4, 7, 13, 0, 14, 12, 9, 11, 3, 8, 10, 1, 5, 15],dtype=int64)
"""
所得结果为打乱后数据从小到大排列的索引
"""

.partition()

np.partition(x, 7)  # array([ 1,  3,  0,  4,  2,  5,  6,  7,  8, 12, 13,  9, 11, 10, 14, 15])
"""
np.partition(x,7) # 表示数组 x 中第 7 小的元素位于排序完成数组 x 的第 7 个位置上
             然后小于该元素的位于该元素左边,大于该元素的位于右边,
             左右两边没有特别的排序要求,只要求左边小于该元素,右边大于该元素即可
"""

.argpartition()

#返回的是排序完成的元素索引数组
np.argpartition(x, 7)
np.random.seed(10)
X = np.random.randint(10, size=(4,4))
"""
array([[9, 4, 0, 1],
[9, 0, 1, 8],
[9, 0, 8, 6],
[4, 3, 0, 4]])
""" np.argsort(X, axis=1)
"""
array([[2, 3, 1, 0],
[1, 2, 3, 0],
[1, 3, 2, 0],
[2, 1, 0, 3]], dtype=int64)
""" np.argpartition(X, 2, axis=1)
"""
array([[2, 3, 1, 0],
[1, 2, 3, 0],
[1, 3, 2, 0],
[2, 1, 0, 3]], dtype=int64)
"""

Numpy 排序和使用索引的更多相关文章

  1. NumPy 排序、条件刷选函数

    NumPy 排序.条件刷选函数 NumPy 提供了多种排序的方法. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种排序算法 ...

  2. numpy排序(sort、argsort、lexsort、partition、sorted)

    1.sort numpy.sort(a, axis=1, kind='quicksort', order=None) a :所需排序的数组 axis:数组排序时的基准,axis=0按行排列:axis= ...

  3. NumPy排序、搜索和计数函数

    NumPy - 排序.搜索和计数函数 NumPy中提供了各种排序相关功能. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种 ...

  4. NumPy 排序、查找、计数

    章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切 ...

  5. Mysql 排序优化与索引使用(转)

    为了优化SQL语句的排序性能,最好的情况是避免排序,合理利用索引是一个不错的方法.因为索引本身也是有序的,如果在需要排序的字段上面建立了合适的索引,那么就可以跳过排序的过程,提高SQL的查询速度.下面 ...

  6. 科学计算库Numpy——排序

    矩阵按维度排序 使用np.sort()进行排序. 排序索引值 使用np.argsort()排序,返回排序后的索引值. 备注:array1[1,2]=1.2,array1[1,0]=5.6,array1 ...

  7. mysql 排序字段与索引有关系吗?

    mysql 排序字段与索引有关系吗?答案与否需要你explain一下你的sql脚本 另外记住:date_add()方法会影响Index_modify_time索引(即:时间字段索引)  一般遇到这样的 ...

  8. Numpy对数组按索引查询

    Numpy对数组按索引查询 三种索引方法: 基础索引 神奇索引 布尔索引 基础索引 一维数组 和Python的List一样 二维数组 注意:切片的修改会修改原来的数组 原因:Numpy经常要处理大数组 ...

  9. Python 排序和numpy排序,得到排序后索引序列(及源list的序列)

    Python list 排序 & np list 排序 nums = [1.25, 0.98, 6.13, 7.62] li = np.array(nums) print(li) out = ...

随机推荐

  1. vue-cli 脚手架安装

    1.安装node;选择适合自己系统的文件,下载一路next , a安装成功后,打开运行输入cmd 进入命令行: 在命令行工具中输入 npm -v  检查版本号 如果出现 则安装成功:(npm为node ...

  2. springcloud --- spring cloud sleuth和zipkin日志管理(spring boot 2.18)

    前言 在spring cloud分布式架构中,系统被拆分成了许多个服务单元,业务复杂性提高.如果出现了异常情况,很难定位到错误位置,所以需要实现分布式链路追踪,跟进一个请求有哪些服务参与,参与的顺序如 ...

  3. Java 学习笔记之 异常法停止线程

    异常法停止线程: public class RealInterruptThread extends Thread { @Override public void run() { try { for ( ...

  4. docker服务在Mac上的启动与使用

    在mac上打开安装的docker软件就可以启动docker服务了 点击顶部状态栏中鲸鱼图标会弹出操作菜单,显示着服务的状态,如下图所示: 只有在docker服务启动了之后,才可以在终端使用docker ...

  5. Vue核心知识——computed和watch的细节全面分析

    computed和watch的区别 computed特性 1.是计算值,2.应用:就是简化tempalte里面{{}}计算和处理props或$emit的传值,computed(数据联动).3.具有缓存 ...

  6. 网络请求中的cookie与set-Cookie的交互模式的一些问题解析

    首先我们需要思考,很多问题. 1.当很多人访问统一个网服务器,服务器如何来区分不同的用户呢? 答:sessionid,sessionid保证了浏览器和服务器唯一性的通信凭证号码,session保存在服 ...

  7. 我最推荐的一张Java后端学习路线图,Java工程师必备

    前言 学习路线图往往是学习一样技术的入门指南.网上搜到的Java学习路线图也是一抓一大把. 今天我只选一张图,仅此一图,足以包罗Java后端技术的知识点.所谓不求最好,但求最全,学习Java后端的同学 ...

  8. Orecle基本概述(1)

    Orecle1.什么是orecle及体系结构?* 全局数据库,指物理磁盘数据库,一个真实存在的磁盘目录.*用户: 用户在oracle里面是用来隔离数据的*表空间: 逻辑结构,不可视的,虚拟的,用户的数 ...

  9. Java微服务(二):负载均衡、序列化、熔断

    本文接着上一篇写的<Java微服务(二):服务消费者与提供者搭建>,上一篇文章主要讲述了消费者与服务者的搭建与简单的实现.其中重点需要注意配置文件中的几个坑. 本章节介绍一些零散的内容:服 ...

  10. Oracle11g入门

    数据类型 数据类型 表示 数字 number 日期时间 date 字符串 char(长度)/varchar2(长度) 约束条件 名称 约束 唯一 unique 非空约束 not null 主键约束 p ...