TCP三次握手和四次挥手

TCP有6种标示:SYN(建立联机) ACK(确认) PSH(传送) FIN(结束) RST(重置) URG(紧急)

一、TCP三次握手

  第一次握手

客户端向服务器发出连接请求报文,这时报文首部中的同部位SYN=1,同时随机生成初始序列号 seq=x,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状

态。TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。这个三次握手中的开始。表示客户端想要和服务端建立连接。

第二次握手

TCP服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=1,SYN=1,确认号是ack=x+1,同时也要为自己随机初始化一个序列号 seq=y,此

时,TCP服务器进程进入了SYN-RCVD(同步收到)状态。这个报文也不能携带数据,但是同样要消耗一个序号。这个报文带有SYN(建立连接)和ACK(确认)标志,询问客户端

是否准备好。

第三次握手

TCP客户进程收到确认后,还要向服务器给出确认。确认报文的ACK=1,ack=y+1,此时,TCP连接建立,客户端进入ESTABLISHED(已建立连接)状态。

TCP规定,ACK报文段可以携带数据,但是如果不携带数据则不消耗序号。这里客户端表示我已经准备好。

思考:为什么要三次握手呢,有人说两次握手就好了

举例:已失效的连接请求报文段。

client发送了第一个连接的请求报文,但是由于网络不好,这个请求没有立即到达服务端,而是在某个网络节点中滞留了,直到某个时间才到达server,本来这已经是一个失效

的报文,但是server端接收到这个请求报文后,还是会想client发出确认的报文,表示同意连接。假如不采用三次握手,那么只要server发出确认,新的建立就连接了,但其实这个

请求是失效的请求,client是不会理睬server的确认信息,也不会向服务端发送确认的请求,但是server认为新的连接已经建立起来了,并一直等待client发来数据,这样,server的

很多资源就没白白浪费掉了,采用三次握手就是为了防止这种情况的发生,server会因为收不到确认的报文,就知道client并没有建立连接。这就是三次握手的作用。

二、TCP数据的传输过程

建立连接后,两台主机就可以相互传输数据了。如下图所示:

  1)主机A初始seq为1200,滑动窗体为100,向主机B传递数据的过程。

  2)假设主机B在完全成功接收数据的基础上,那么主机B为了确认这一点,向主机A发送 ACK 包,并将 Ack 号设置为 1301。因此按如下的公式确认 Ack 号:

Ack号 = Seq号 + 传递的字节数 + 1 (这是在完全接受成功的情况下)

  3)主机A获得B传来的ack(1301)后,开始发送seq为1301,滑动窗体为100的数据。
       ......

与三次握手协议相同,最后加 1 是为了告诉对方要传递的 Seq 号。上面说了,主机B完全成功接收A发来的数据才是这样的,如果存在丢包该如何。

下面分析传输过程中数据包丢失的情况,如下图所示:

上图表示通过 Seq 1301 数据包向主机B传递100字节的数据,但中间发生了错误,主机B未收到。经过一段时间后,主机A仍未收到对于 Seq 1301 的ACK确认,因此尝试

重传数据。为了完成数据包的重传,TCP套接字每次发送数据包时都会启动定时器,如果在一定时间内没有收到目标机器传回的 ACK 包,那么定时器超时,数据包会重传。

上面也只是一种可能,比如数据1250丢失,那么Ack返回的就是1250,具体的可以详细看下博客:【TCP协议】(1)---TCP协议详解,这里面滑动窗口有说明。

三、TCP的四次挥手

第一次挥手

TCP发送一个FIN(结束),用来关闭客户到服务端的连接。

客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),

此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

挥手

服务端收到这个FIN,他发回一个ACK(确认),确认收到序号为收到序号+1,和SYN一样,一个FIN将占用一个序号。

服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器

通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个

状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

挥手

服务端发送一个FIN(结束)到客户端,服务端关闭客户端的连接。

服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,

此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

挥手

客户端发送ACK(确认)报文确认,并将确认的序号+1,这样关闭完成。

客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时

TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

思考:那么为什么是4次挥手呢?

为了确保数据能够完成传输。

关闭连接时,当收到对方的FIN报文通知时,它仅仅表示对方没有数据发送给你了;但未必你所有的数据都全部发送给对方了,所以你可以未必会马上会关闭SOCKET,也

即你可能还需要发送一些数据给对方之后,再发送FIN报文给对方来表示你同意现在可以关闭连接了,所以它这里的ACK报文和FIN报文多数情况下都是分开发送的。

可能有人会有疑问,tcp我握手的时候为何ACK(确认)和SYN(建立连接)是一起发送。挥手的时候为什么是分开的时候发送呢.

因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到

FIN报文时,很可能并不会立即关闭 SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能

发送FIN报文,因此不能一起发送。故需要四步挥手

思考:客户端突然挂掉了怎么办?

正常连接时,客户端突然挂掉了,如果没有措施处理这种情况,那么就会出现客户端和服务器端出现长时期的空闲。解决办法是在服务器端设置保活计时器,每当服务器收到

客户端的消息,就将计时器复位。超时时间通常设置为2小时。若服务器超过2小时没收到客户的信息,他就发送探测报文段。若发送了10个探测报文段,每一个相隔75秒,

还没有响应就认为客户端出了故障,因而终止该连接。

四、SYN(洪水)攻击

背景

初始化连接的 SYN 超时问题Client发送SYN包给Server后挂了,Server回给Client的SYN-ACK一直没收到Client的ACK确认,这个时候这个连接既没建立起来,也不能算

失败。这就需要一个超时时间让Server将这个连接断开,否则这个连接就会一直占用Server的SYN连接队列中的一个位置,大量这样的连接就会将Server的SYN连接队列耗尽,

让正常的连接无法得到处理。

目前,Linux下默认会进行5次重发SYN-ACK包,重试的间隔时间从1s开始,下次的重试间隔时间是前一次的双倍,5次的重试时间间隔为1s, 2s, 4s, 8s, 16s,总共31s,第

5次发出后还要等32s都知道第5次也超时了,所以,总共需要 1s + 2s + 4s+ 8s+ 16s + 32s = 63s,TCP才会把断开这个连接。由于,SYN超时需要63秒,那么就给攻击者一

个攻击服务器的机会,攻击者在短时间内发送大量的SYN包给Server(俗称SYN flood攻击),用于耗尽Server的SYN队列。

什么是 SYN 攻击

SYN 攻击指的是,攻击客户端在短时间内伪造大量不存在的IP地址,向服务器不断地发送SYN包,服务器回复确认包,并等待客户的确认。由于源地址是不存在的,服务器

需要不断的重发直至超时,这些伪造的SYN包将长时间占用未连接队列,正常的SYN请求被丢弃,导致目标系统运行缓慢,严重者会引起网络堵塞甚至系统瘫痪。SYN 攻击是一

种典型的 DoS攻击。

如何检测 SYN 攻击?

检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。在 Linux/Unix 上可以使用系统自带的

netstats 命令来检测 SYN 攻击。

如何防御 SYN 攻击?

SYN攻击不能完全被阻止,除非将TCP协议重新设计。我们所做的是尽可能的减轻SYN攻击的危害,常见的防御 SYN 攻击的方法有如下几种:

缩短超时(SYN Timeout)

时间增加最大半连接数

过滤网关防护SYN

cookies技术

四、TCP和UDP的区别

我这里简单列举几个,因为我还没有研究UDP这个协议。

1、基于连接与无连接;UDP是无连接的,即发送数据之前不需要建立连接

2、TCP保证数据正确性,UDP可能丢包,TCP保证数据顺序,UDP不保证。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付

,即不保证可靠交付Tcp通过校验和,重传控制,序号标识,滑动窗口、确认应答实现可靠传输。如丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。

3、UDP具有较好的实时性,工作效率比TCP高,适用于对高速传输和实时性有较高的通信或广播通信。

4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信。

5、TCP对系统资源要求较多,UDP对系统资源要求较少。

TCP协议--TCP三次握手和四次挥手的更多相关文章

  1. TCP协议的三次握手和四次挥手机制

    核心知识点: 1.三次握手:seq和ack number 2.四次挥手:FIN和随机数 一.TCP/IP协议 TCP/IP协议(Transmission control protool/Interne ...

  2. TCP协议的三次握手和四次挥手

    暂时需要的信息有: ACK : TCP协议规定,只有ACK=1时有效,也规定连接建立后所有发送的报文的ACK必须为1 SYN(SYNchronization) : 在连接建立时用来同步序号.当SYN= ...

  3. 网络编程——TCP协议的三次握手和四次挥手

    三次握手原理解析 TCP握手协议在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接. 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND ...

  4. TCP协议的三次握手和四次挥手过程

    TCP是一种面向连接(连接导向)的.可靠的基于字节流的传输层通信协议.TCP将用户数据打包成报文段,它发送后启动一个定时器,另一端收到的数据进行确认.对失序的数据重新排序.丢弃重复数据. 1.TCP/ ...

  5. TCP协议的三次握手、四次挥手

    TCP三次握手 TCP的连接的建立需要发送三个包,一次称为三次握手(Three-way Handshake). 三次握手的目的是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号并交换 ...

  6. TCP协议的“三次握手”和“四次挥手”

    TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接.在TCP/IP协议中,TCP 协议提供可靠的连接服务,连接是通过三次握手进行初始化的.三次握手的目的是同步连接双方的 ...

  7. TCP协议的三次握手与四次挥手

    1.数据包说明 1)源端口号(16位):它(连同源主机IP地址)标识源主机的一个应用进程. 2)目标端口号(16位):它(连同源主机IP地址)标识目的主机的一个应用进程.这两个值加上IP报头中的源主机 ...

  8. NetWork——关于TCP协议的三次握手和四次挥手

    分钟. (2)服务器B存在一个保活状态,即如果A突然故障死机了,那B那边的连接资源什么时候能释放呢? 就是保活时间到了后,B会发送探测信息,以决定是否释放连接. (3)为什么连接的时候是三次握手,关闭 ...

  9. 学习http协议的三次握手和四次挥手 ~~笔记

    http协议是基于tcp协议的  所以应该说是tcp协议的三次握手和四次挥手 SYN:请求建立连接,并在其序列号的字段进行序列号的初始值设定.建立连接,设置为1 FIN:用来释放一个连接.FIN=1表 ...

  10. TCP 中的三次握手和四次挥手

    Table of Contents 前言 数据报头部 三次握手 SYN 攻击 四次挥手 半连接 TIME_WAIT 结语 参考链接 前言 TCP 中的三次握手和四次挥手应该是非常著名的两个问题了,一方 ...

随机推荐

  1. HashMap的结构以及核心源码分析

    摘要 对于Java开发人员来说,能够熟练地掌握java的集合类是必须的,本节想要跟大家共同学习一下JDK1.8中HashMap的底层实现与源码分析.HashMap是开发中使用频率最高的用于映射(键值对 ...

  2. 如何更快理解和运用服务编排?(使用Goku API Gateway实现)

    上一篇博客 未来实现API管理系统的几个关键词 发布后,有不少读者私信我,让我写一篇实际运用的文章,我周末趁着有空写了这篇有关“服务编排”的文章.用的是Goku API Gateway进行演示, 希望 ...

  3. Unix 线程改变创建进程中变量的值(2)

    执行环境:Linux ubuntu 4.4.0-31-generic #50-Ubuntu SMP Wed Jul 13 00:07:12 UTC 2016 x86_64 x86_64 x86_64 ...

  4. PMP(第六版)中的控制账户、规划包、工作包

    PMP(第六版)中的控制账户.规划包.工作包 控制账户是一个管理控制点,在该控制点上,把范围.预算和进度加以整合,并与挣值比较,以测量绩效.控制账户拥有2个或以上的工作包,但每个工作包只与一个控制账户 ...

  5. ElasticSearch安装及使用

    ElasticSearch安装及使用 ELK由Elasticsearch.Logstash和Kibana三部分组件组成. Elasticsearch 是个开源分布式搜索引擎,它的特点有:分布式,零配置 ...

  6. redis之PubSub

    前面我们讲了 Redis 消息队列的使用方法,但是没有提到 Redis 消息队列的不足之处,那就是它不支持消息的多播机制. 消息多播 消息多播允许生产者生产一次消息,中间件负责将消息复制到多个消息队列 ...

  7. C++ 构造函数的执行过程(一) 无继承

      引言 C++ 构造函数的执行过程(一) 无继承 本篇介绍了在无继承情况下, C++构造函数的执行过程, 即成员变量的构建先于函数体的执行, 初始化列表的数量和顺序并不对构造函数执行顺序造成任何影响 ...

  8. 使用webpack命令打包时,报错TypeError: Cannot read property 'presetToOptions' of undefined的解决办法

    我只安装了webpack,没有安装webpack-cli,第一次输入webpack打包时,提示 One CLI for webpack must be installed. These are rec ...

  9. boostrap原理.html

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. vue事件

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...