【XSY2344】K-th String
Description
Alice有 n(n≤26) 张牌,牌上分别标有前 n 个英文小写字母。例如,如果 n=3 ,则Alice有3张牌,分别标有"a", "b", "c" 。Alice可以通过排列这些卡牌来构造字符串 t 。考虑字符串 t 的所有子串(共 n(n+1)2 个),按照字典序从小到大排名第 k 的子串为 s 。现在,给你正整数 n,k 和字符串 s ,问有多少种可能的字符串 t 。将答案对 109+7 取模。
例如: 当 n=3,t="cab" 时,排序后的子串为"a", "ab", "b", "ca", "cab", "cab",排名第3的子串为"b"。当 n=3,k=3,s="b" 时 ,则 t 可能为"cab"或"bac" ,故答案为2种。
Input
第一行两个整数 \(n,k(1≤n≤26,1≤k≤n(n+1)/2)\) 。
第二行一个字符串 s ,s 中仅包含前 n 个字母,且 s 中的字母两两不同。
Output
输出一行表示答案。将答案对 109+7 取模。
Sample Input
3 3
b
Sample Output
2
HINT
数据范围与约定
对于30%的数据, \(1≤n≤8\)
对于所有数据, \(1≤n≤26\)
想象一下DP
我们先枚举s串
\(dp[i][j][k][l]\)表示前\(i\)个字母中,有\(j\)个比\(s[1]\)小,他们对答案的贡献为\(k\)(添加这个节点后会有多少个新的小于\(s[1]\)的串),\(l=0或1\),表示现在所取的子串中,有没有s这个串的方案数。
三种情况状态转移:
1.不取\(i\)这个点: dp[i+1][j][kk][l]=dp[i+1][j][kk][l]+dp[i][j][kk][l]
2.取\(i\)这个点:
一个点的贡献就是包含这个点在内,剩余子串的长度。
dp[i+1][j+1][kk+n-i][l]=dp[i+1][j+1][kk+n-i][l]+dp[i][j][kk][l]
3.直接取整个s串(前提:之前没取过s):
直接取s串的贡献就是对s串中的每一个点都求贡献
if(i+len<=n&&!l)
{
dp[i+len][j][kk+(n-i)*sum1-sum][1]=(dp[i+len][j][kk+(n-i)*sum1-sum][1]+dp[i][j][kk][l])%mod;
}
最后统计答案:
因为在s串之前的字母的每一种排列都符合要求,所以答案要乘上排列的情况数。
s串之后的字母同理。
代码:
#include<bits/stdc++.h>
#define mod 1000000007
using namespace std;
int n,k,dp[27][27][3050][2],sum,sum1;
char ch[27];
int main()
{
scanf("%d%d%s",&n,&k,ch+1);
int len=strlen(ch+1);
k-=len;
if(k<0)
{
puts("0");
return 0;
}
int num=ch[1]-'a'+1;
for(int i=1;i<=len;i++)
{
if(ch[i]<=ch[1])
{
num--;
if(ch[i]!=ch[1])
{
sum=sum+i-1;
sum1++;//在s串之内的小于s[1]的字母的个数
}
}
}
dp[0][0][0][0]=1;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
for(int kk=0;kk<=n*(n+1)/2;kk++)
{
for(int l=0;l<=1;l++)
{
dp[i+1][j][kk][l]=(dp[i+1][j][kk][l]+dp[i][j][kk][l])%mod;//不取
dp[i+1][j+1][kk+n-i][l]=(dp[i+1][j+1][kk+n-i][l]+dp[i][j][kk][l])%mod;//取
if(i+len<=n&&!l)
{
dp[i+len][j][kk+(n-i)*sum1-sum][1]=(dp[i+len][j][kk+(n-i)*sum1-sum][1]+dp[i][j][kk][l])%mod;//整个s串
}
}
}
}
}
long long ans=dp[n][num][k][1];//答案的一种
for(int i=1;i<=num;i++)//乘上头和尾的排列数
{
ans=(ans*i)%mod;
}
for(int i=1;i<=n-num-len;i++)
{
ans=(ans*i)%mod;
}
printf("%lld\n",ans);
return 0;
}
【XSY2344】K-th String的更多相关文章
- 【CF1132F】Clear the String(动态规划)
[CF1132F]Clear the String(动态规划) 题面 CF 题解 考虑区间\(dp\). 增量考虑,每次考虑最后一个字符和谁一起删去,然后直接转移就行了. #include<io ...
- 【HDU5421】Victor and String(回文树)
[HDU5421]Victor and String(回文树) 题面 Vjudge 大意: 你需要支持以下操作: 动态在前端插入一个字符 动态在后端插入一个字符 回答当前本质不同的回文串个数 回答当前 ...
- 【CF954I】Yet Another String Matching Problem(FFT)
[CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...
- 【LeetCode】880. Decoded String at Index 解题报告(Python)
[LeetCode]880. Decoded String at Index 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博 ...
- 【BZOJ3110】K大数查询(整体二分)
[BZOJ3110]K大数查询(整体二分) 题面 BZOJ 题解 看了很久整体二分 一直不知道哪里写错了 ... 又把树状数组当成线段树区间加法来用了.. 整体二分还是要想清楚在干什么: 我们考虑第\ ...
- 【CF1133E】K Balanced Teams(动态规划,单调队列)
[CF1133E]K Balanced Teams(动态规划,单调队列) 题面 CF 让你把一堆数选一些出来分成不超过\(K\)组,每一组里面的最大值和最小值之差不超过\(5\),求最多有多少个人元素 ...
- 【Hihocoder1413】Rikka with String(后缀自动机)
[Hihocoder1413]Rikka with String(后缀自动机) 题面 Hihocoder 给定一个小写字母串,回答分别把每个位置上的字符替换为'#'后的本质不同的子串数. 题解 首先横 ...
- 【CF886D】Restoration of string 乱搞
[CF886D]Restoration of string 题意:对于给定的一个母串,定义一个字符串是出现频率最多的,当且仅当它在母串中出现的次数最多(可以有多个出现次数最多的,出现的位置可以重叠). ...
- 【BZOJ4520】K远点对(KD-Tree)
[BZOJ4520]K远点对(KD-Tree) 题面 BZOJ 洛谷 题解 考虑暴力. 维护一个大小为\(K\)的小根堆,然后每次把两个点之间的距离插进去,然后弹出堆顶 这样子可以用\(KD-Tree ...
- 【BZOJ4504】K个串 可持久化线段树+堆
[BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...
随机推荐
- 一个网站完整的SEO优化方案,方法,怎么做seo优化?
SEO优化主要分为站内优化,站外优化.如果非得说一套完整的SEO优化方案,那就是需要4名专业人员:前端人员,内容编辑,网络推广人员,和数据分析人员.那以下就详细介绍这四个岗位各自负责的工作有哪些: 一 ...
- Python Excel操作——xlrd、xlwd
读取 1.导入模块 import xlrd 2.打开Excel文件读取数据 data = xlrd.open_workbook('excel.xls') 3.获取一个工作表 1 table = dat ...
- 30 分钟快速入门 Docker 教程
原文地址:梁桂钊的博客 博客地址:http://blog.720ui.com 欢迎关注公众号:「服务端思维」.一群同频者,一起成长,一起精进,打破认知的局限性. 一.欢迎来到 Docker 世界 1. ...
- flask+阿里云短信服务实现注册发送手机验证码
效果图: 该效果主要讲解实现通过调用阿里云的SDK实现发送注册验证码短信(阿里云短信付费使用) 购买阿里云短信服务 购买链接:https://www.aliyun.com/product/sms 1. ...
- kotlin系列文章 --- 1.初识kotlin
简介 Kotlin 是一种在 Java 虚拟机上运行的静态类型编程语言,由Jetbrains设计开发,现在是Android官方开发语言,和Java具有互操作性,可以共存. 为什么选择kotlin? 简 ...
- c++第一个程序“Hello world!”
c++第一个程序“Hello world!” 打开编译器(这里以vs2013为例) 单击新建项目 选择Win32 控制台应用程序 点击右下角确定 点击完成 点击解决方案管理器 新建cpp文件 右 ...
- 网络游戏开发-客户端1(开始Hello world)
打开Egret Launcher ,新建一个EUI项目,起名为 EQiPai 这里需要勾选的是socket网络库,game游戏库.如果要面向海外用户的话,建议勾上Facebook的小游戏sdk. 然后 ...
- 网页布局——Flex弹性框布局
布局的传统解决方案,基于盒状模型,依赖 display 属性 + position属性 + float属性.它对于那些特殊布局非常不方便,比如,垂直居中就不容易实现. 需要安卓4.4及以上版本可以使用 ...
- 分库分表(6)--- SpringBoot+ShardingSphere实现分表+ 读写分离
分库分表(6)--- ShardingSphere实现分表+ 读写分离 有关分库分表前面写了五篇博客: 1.分库分表(1) --- 理论 2.分库分表(2) --- ShardingSphere(理论 ...
- Hyper-V 下linux虚拟机静态IP上网配置的两种方式(2)
工作需要,搭建linux环境,网上搜了两种Hyper-V配置linux静态IP及上网的方式,记录一下,方便查阅,如下设置网络共享方式: win10下使用hyper-v在本机安装linux虚拟机后,网络 ...