【BZOJ2655】calc(拉格朗日插值)
题意:
给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\)。同时要求这\(n\)个数两两不相同。
问一共有多少种方案。
思路:
因为\(A\)很大,同时随着值域的不断增加,感觉最终的答案像个多项式,又因为\(0\leq A\leq n\)时的答案很显然。。所以猜一发这是一个最高项次数为\(2n\)的多项式,然后拉格朗日插值搞就行了(滑稽)。
求方案数的时候\(dp\)来求(我好像是乱搞搞出来的)。
/*
* Author: heyuhhh
* Created Time: 2019/11/18 22:19:29
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 505;
int A, n, MOD;
int g[N][N << 1];
ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
struct Lagrange {
static const int SIZE = N << 1;
ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
int n;
inline void add(ll &x, int y) {
x += y;
if(x >= MOD) x -= MOD;
}
void init(int _n) {
n = _n;
fac[0] = 1;
for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;
inv[SIZE - 1] = qpow(fac[SIZE - 1], MOD - 2);
for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
//设置f初值,可以根据需要修改
for (int i = 0; i < n / 2; ++i) f[i] = 0;
}
ll calc(ll x) {
if (x <= n) return f[x];
pre[0] = x % MOD;
for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
suf[n] = (x - n) % MOD;
for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
ll res = 0;
for (int i = 0; i <= n; ++i) {
ll tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
if (i) tmp = tmp * pre[i - 1] % MOD;
if (i < n) tmp = tmp * suf[i + 1] % MOD;
if ((n - i) & 1) tmp = MOD - tmp;
add(res, tmp);
}
return res;
}
}lagrange;
void run(){
lagrange.init(2 * n);
int fac = 1;
for(int i = 1; i <= n; i++) fac = 1ll * fac * i % MOD;
for(int up = n; up <= 2 * n; up++) {
for(int i = n; i >= 1; i--) {
for(int j = i; j + n - i <= up; j++) {
if(i == n) g[i][j] = j % MOD;
else g[i][j] = 1ll * g[i + 1][j + 1] * j % MOD;
}
for(int j = up - n + i; j >= i; j--) g[i][j] = (g[i][j] + g[i][j + 1]) % MOD;
}
lagrange.f[up] = 1ll * g[1][1] * fac % MOD;
}
int ans = lagrange.calc(A);
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> A >> n >> MOD) run();
return 0;
}
【BZOJ2655】calc(拉格朗日插值)的更多相关文章
- bzoj千题计划269:bzoj2655: calc (拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- BZOJ 2655: calc(拉格朗日插值)
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...
- [BZOJ2655]calc(拉格朗日插值法+DP)
2655: calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 428 Solved: 246[Submit][Status][Discuss] ...
- bzoj 2566 calc 拉格朗日插值
calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 377 Solved: 226[Submit][Status][Discuss] Descr ...
- bzoj 2655 calc——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...
- 【BZOJ2655】Calc(拉格朗日插值,动态规划)
[BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
随机推荐
- 2-2 远程管理命令-网卡和IP地址的概念
02.查看或配置网卡信息 序号 命令 对应英文 作用 01 ifconfig configure a network interface 查看/配置计算机当前的网卡配置信息 02 ping ip地址 ...
- OSPF与ACL综合实验
OSPF与ACL综合实验 1.实验内容 (1)企业内网运行OSPF路由协议,区域规划如拓扑图所示(见3.实验拓扑图): (2)财务和研发所在的区域不受其他区域链路不稳定性影响: (3)R1.R2.R3 ...
- SPA项目开发之动态树以及数据表格和分页
首先我们来看下数据库 t_vue_user t_vue_tree_node t_vue_articles 2. 动态生成NavMenu导航菜单(只支持2级菜单) <el-menu key=&qu ...
- Spring汇总
如今做Java尤其是web几乎是避免不了和Spring打交道了,但是Spring是这样的大而全,新鲜名词不断产生,学起来给人一种凌乱的感觉,我就在这里总结一下,理顺头绪. Spring Spring ...
- codeforces 1027E. Inverse Coloring(计数)
一开始发现的性质是确定了第一行后,后面的行只需要考虑和前面的行相同或者不同,整个过程只需要考虑行,构出的图一定符合性质(即同样满足列的性质),但是接下来死活定义不出状态,事实证明自己还是想的太少了 思 ...
- 微服务、SpringCloud、k8s、Istio杂谈
一.微服务与SOA “微服务”是一个名词,没有这个名词之前也有“微服务”,一个朗朗上口的名词能让大家产生一个认知共识,这对推动一个事务的发展挺重要的,不然你叫微服务他叫小服务的大家很难集中到一个点上. ...
- DirectShow 应用开发过程
本文准备总结一些 Direct Show 常用的API接口函数,方便以后查询回忆.如果这里没有你想了解的函数,你可以自行搜索MSDN + 函数名去 MSDN 查找你想要了解的函数,也可以查看百度百科相 ...
- Filter 原理
二.Filter 原理 2.1 Filter 概述 Filter(过滤器)是 DirectShow 中最基本的概念.DirectShow 是通过 Filter Graph 来管理 Filter 的.F ...
- 要想精通Mybatis?从手写Mybatis框架开始吧!
1.Mybatis组成 动态SQL Config配置 Mapper配置 2.核心源码分析 Configuration源码解析 SqlSessionFactory源码解析 SqlSession源码解析 ...
- Mac(PC)连接虚拟机MySQL失败
解决: 首先登陆虚拟机的MySQL use mysql; select host,user from user; 可以看到,默认的mysql只允许本机访问 将host设置为通配符模式%,Host设置为 ...