bzoj

题意:

给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\)。同时要求这\(n\)个数两两不相同。

问一共有多少种方案。

思路:

因为\(A\)很大,同时随着值域的不断增加,感觉最终的答案像个多项式,又因为\(0\leq A\leq n\)时的答案很显然。。所以猜一发这是一个最高项次数为\(2n\)的多项式,然后拉格朗日插值搞就行了(滑稽)。

求方案数的时候\(dp\)来求(我好像是乱搞搞出来的)。

/*
* Author: heyuhhh
* Created Time: 2019/11/18 22:19:29
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 505; int A, n, MOD;
int g[N][N << 1]; ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
struct Lagrange {
static const int SIZE = N << 1;
ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
int n;
inline void add(ll &x, int y) {
x += y;
if(x >= MOD) x -= MOD;
}
void init(int _n) {
n = _n;
fac[0] = 1;
for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;
inv[SIZE - 1] = qpow(fac[SIZE - 1], MOD - 2);
for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
//设置f初值,可以根据需要修改
for (int i = 0; i < n / 2; ++i) f[i] = 0;
}
ll calc(ll x) {
if (x <= n) return f[x];
pre[0] = x % MOD;
for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
suf[n] = (x - n) % MOD;
for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
ll res = 0;
for (int i = 0; i <= n; ++i) {
ll tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
if (i) tmp = tmp * pre[i - 1] % MOD;
if (i < n) tmp = tmp * suf[i + 1] % MOD;
if ((n - i) & 1) tmp = MOD - tmp;
add(res, tmp);
}
return res;
}
}lagrange; void run(){
lagrange.init(2 * n);
int fac = 1;
for(int i = 1; i <= n; i++) fac = 1ll * fac * i % MOD;
for(int up = n; up <= 2 * n; up++) {
for(int i = n; i >= 1; i--) {
for(int j = i; j + n - i <= up; j++) {
if(i == n) g[i][j] = j % MOD;
else g[i][j] = 1ll * g[i + 1][j + 1] * j % MOD;
}
for(int j = up - n + i; j >= i; j--) g[i][j] = (g[i][j] + g[i][j + 1]) % MOD;
}
lagrange.f[up] = 1ll * g[1][1] * fac % MOD;
}
int ans = lagrange.calc(A);
cout << ans << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> A >> n >> MOD) run();
return 0;
}

【BZOJ2655】calc(拉格朗日插值)的更多相关文章

  1. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  2. P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析

    LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...

  3. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  4. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  5. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  6. bzoj 2566 calc 拉格朗日插值

    calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 377  Solved: 226[Submit][Status][Discuss] Descr ...

  7. bzoj 2655 calc——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...

  8. 【BZOJ2655】Calc(拉格朗日插值,动态规划)

    [BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...

  9. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

随机推荐

  1. 2-2 远程管理命令-网卡和IP地址的概念

    02.查看或配置网卡信息 序号 命令 对应英文 作用 01 ifconfig configure a network interface 查看/配置计算机当前的网卡配置信息 02 ping ip地址 ...

  2. OSPF与ACL综合实验

    OSPF与ACL综合实验 1.实验内容 (1)企业内网运行OSPF路由协议,区域规划如拓扑图所示(见3.实验拓扑图): (2)财务和研发所在的区域不受其他区域链路不稳定性影响: (3)R1.R2.R3 ...

  3. SPA项目开发之动态树以及数据表格和分页

    首先我们来看下数据库 t_vue_user t_vue_tree_node t_vue_articles 2. 动态生成NavMenu导航菜单(只支持2级菜单) <el-menu key=&qu ...

  4. Spring汇总

    如今做Java尤其是web几乎是避免不了和Spring打交道了,但是Spring是这样的大而全,新鲜名词不断产生,学起来给人一种凌乱的感觉,我就在这里总结一下,理顺头绪. Spring Spring ...

  5. codeforces 1027E. Inverse Coloring(计数)

    一开始发现的性质是确定了第一行后,后面的行只需要考虑和前面的行相同或者不同,整个过程只需要考虑行,构出的图一定符合性质(即同样满足列的性质),但是接下来死活定义不出状态,事实证明自己还是想的太少了 思 ...

  6. 微服务、SpringCloud、k8s、Istio杂谈

    一.微服务与SOA “微服务”是一个名词,没有这个名词之前也有“微服务”,一个朗朗上口的名词能让大家产生一个认知共识,这对推动一个事务的发展挺重要的,不然你叫微服务他叫小服务的大家很难集中到一个点上. ...

  7. DirectShow 应用开发过程

    本文准备总结一些 Direct Show 常用的API接口函数,方便以后查询回忆.如果这里没有你想了解的函数,你可以自行搜索MSDN + 函数名去 MSDN 查找你想要了解的函数,也可以查看百度百科相 ...

  8. Filter 原理

    二.Filter 原理 2.1 Filter 概述 Filter(过滤器)是 DirectShow 中最基本的概念.DirectShow 是通过 Filter Graph 来管理 Filter 的.F ...

  9. 要想精通Mybatis?从手写Mybatis框架开始吧!

    1.Mybatis组成 动态SQL Config配置 Mapper配置 2.核心源码分析 Configuration源码解析 SqlSessionFactory源码解析 SqlSession源码解析 ...

  10. Mac(PC)连接虚拟机MySQL失败

    解决: 首先登陆虚拟机的MySQL use mysql; select host,user from user; 可以看到,默认的mysql只允许本机访问 将host设置为通配符模式%,Host设置为 ...