【tf.keras】实现 F1 score、precision、recall 等 metric
tf.keras.metric 里面竟然没有实现 F1 score、recall、precision 等指标,一开始觉得真不可思议。但这是有原因的,这些指标在 batch-wise 上计算都没有意义,需要在整个验证集上计算,而 tf.keras 在训练过程(包括验证集)中计算 acc、loss 都是一个 batch 计算一次的,最后再平均起来。Keras 2.0 版本将 precision, recall, fbeta_score, fmeasure 等 metrics 移除了。
虽然 tf.keras.metric 中没有实现 f1 socre、precision、recall,但我们可以通过 tf.keras.callbacks.Callback 实现。即在每个 epoch 末尾,在整个 val 上计算 f1、precision、recall。
一些博客实现了二分类下的 f1 socre、precision、recall,如下所示:
- How to compute f1 score for each epoch in Keras -- Thong Nguyen
- keras如何求分类问题中的准确率和召回率? - 鱼塘邓少的回答 - 知乎
以下代码实现了多分类下对验证集 F1 值、precision、recall 的计算,并且保存 val_f1 值最好的模型:
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, recall_score, precision_score
import numpy as np
import os
class Metrics(tf.keras.callbacks.Callback):
def __init__(self, valid_data):
super(Metrics, self).__init__()
self.validation_data = valid_data
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
val_predict = np.argmax(self.model.predict(self.validation_data[0]), -1)
val_targ = self.validation_data[1]
if len(val_targ.shape) == 2 and val_targ.shape[1] != 1:
val_targ = np.argmax(val_targ, -1)
_val_f1 = f1_score(val_targ, val_predict, average='macro')
_val_recall = recall_score(val_targ, val_predict, average='macro')
_val_precision = precision_score(val_targ, val_predict, average='macro')
logs['val_f1'] = _val_f1
logs['val_recall'] = _val_recall
logs['val_precision'] = _val_precision
print(" — val_f1: %f — val_precision: %f — val_recall: %f" % (_val_f1, _val_precision, _val_recall))
return
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=10000, random_state=32)
# LeNet-5
model = tf.keras.models.Sequential([
tf.keras.layers.Input(shape=(32, 32, 3)),
tf.keras.layers.Conv2D(6, 5, activation='relu'),
tf.keras.layers.AveragePooling2D(),
tf.keras.layers.Conv2D(16, 5, activation='relu'),
tf.keras.layers.AveragePooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(120, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(84, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
if not os.path.exists('./checkpoints'):
os.makedirs('./checkpoints')
# 按照 val_f1 保存模型
ck_callback = tf.keras.callbacks.ModelCheckpoint('./checkpoints/weights.{epoch:02d}-{val_f1:.4f}.hdf5',
monitor='val_f1',
mode='max', verbose=2,
save_best_only=True,
save_weights_only=True)
tb_callback = tf.keras.callbacks.TensorBoard(log_dir='./logs', profile_batch=0)
model.fit(x_train, y_train,
validation_data=(x_val, y_val),
epochs=100,
callbacks=[Metrics(valid_data=(x_val, y_val)),
ck_callback,
tb_callback])
注意 Metrics() 和 ck_callback 两个 callback 的顺序,互换之后将报错。
References
How to calculate F1 Macro in Keras? -- StackOverflow
How to compute f1 score for each epoch in Keras -- Thong Nguyen
keras如何求分类问题中的准确率和召回率? - 鱼塘邓少的回答 - 知乎
Keras 2.0 release notes -- keras-team/keras
【tf.keras】实现 F1 score、precision、recall 等 metric的更多相关文章
- How to compute f1 score for each epoch in Keras
https://medium.com/@thongonary/how-to-compute-f1-score-for-each-epoch-in-keras-a1acd17715a2 https:// ...
- Precision,Recall,F1的计算
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...
- 机器学习:评价分类结果(F1 Score)
一.基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票:此情况下,模型精准率越高越优. ...
- 【笔记】F1 score
F1 score 关于精准率和召回率 精准率和召回率可以很好的评价对于数据极度偏斜的二分类问题的算法,有个问题,毕竟是两个指标,有的时候这两个指标也会产生差异,对于不同的算法,精准率可能高一些,召回率 ...
- 机器学习中的 precision、recall、accuracy、F1 Score
1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False ...
- 机器学习--如何理解Accuracy, Precision, Recall, F1 score
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...
- 【tf.keras】使用手册
目录 0. 简介 1. 安装 1.1 安装 CUDA 和 cuDNN 2. 数据集 2.1 使用 tensorflow_datasets 导入公共数据集 2.2 数据集过大导致内存溢出 2.3 加载 ...
- 查准与召回(Precision & Recall)
Precision & Recall 先看下面这张图来理解了,后面再具体分析.下面用P代表Precision,R代表Recall 通俗的讲,Precision 就是检索出来的条目中(比如网页) ...
- hihocoder 1522 : F1 Score
题目链接 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和他的小伙伴们一起写了很多代码.时间一久有些代码究竟是不是自己写的,小Hi也分辨不出来了. 于是他实现 ...
随机推荐
- docker 和 FastDFS上传和下载文件
1,从仓库拉取镜像 sudo docker image pull delron/fastdfs 也可以解压已经打包好的镜像文件 $ sudo docker load -i 文件路径/fastdfs_d ...
- Java基本数据类型的传值
传递值: 说明:标题其实说法是错误的.Java中只有值传递,没有引用传递. ... ... //定义了一个改变参数值的函数 public static void changeValue(int x) ...
- 爬虫之scrapy安装与基本使用
安装:pip install scrapy基本使用 1. 创建项目:scrapy startproject 项目名 cd 项目名 2. 生成爬虫 1. 创建spider爬虫:scrapy genspi ...
- NOIP模拟 34
次芝麻,喝喝喝,长寿花! 什么鬼畜题面...一看就不是什么正经出题人 skyh双双双AK了..太巨了... T1 次芝麻 稍稍手玩就能发现分界点以一个优美的方式跳动 然后就愉快地帮次货们次掉了这个题- ...
- Function题解
这个题最优策略一定是向左上走到某一列再往上一直走. n*q在线暴力可做,离线按y排序,单调栈维护凸壳. 具体来说:对于i<j若A[i]>A[j] 即j的斜率小而且纵截距小,一定比i优,并且 ...
- python学习之【第七篇】:Python中的集合及其所具有的方法
1.前言 python中的集合set与列表类似,它们最大的区别是集合内不允许出现重复元素,如果在定义时包含重复元素,会自动去重. 集合是无序的,集合中的元素必须是不可变类型.集合可以作为字典的key. ...
- 二、安装JDK - Java软件的安装
jdk是 Java 语言的软件开发工具包,主要用于移动设备.嵌入式设备上的java应用程序. 1.安装包的下载:http://pan.baidu.com/s/1mgh58ve (该安装包是绿色的,解压 ...
- 【倒腾HTTPS】Nginx for Docker自签名SSL证书
前言 合格的web程序员, 必须能自由在 IIS. Nginx. Nginx for Docker上配置Https服务, 博客最近将专题记录 Https & Hsts 如何申请适用于生产 ...
- [Error]使用了未经检查或不安全的操作...
编译错误注: MethodReflect.java使用了未经检查或不安全的操作.注: 有关详细信息, 请使用 -Xlint:unchecked 重新编译. 解决:在类前面加入下面一句解决 @Suppr ...
- PHP面向对象中new self( )和 new static( ) 的区别
在PHP中 self指向定义了当前被调用方法的类, static指向调用当前静态方法的类. class A { public static $_a = 'Class A'; public static ...