floyd求最小环

在Floyd的同时,顺便算出最小环。
Floyd算法
 for(k=;k<=n;k++)
{ for(i=;i<k;i++)
for(j=i+;j<k;j++)
if(d[i][j]+m[i][k]+m[k][j]<min)
min=d[i][j]+m[i][k]+m[k][j];
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(d[i][k]+d[k][j]<d[i][j])
d[i][j]=d[i][k]+d[k][j];
}
保证了最外层循环到 k 时所有顶点间已求得以 0...k-1 为中间点的最短路径。一
个环至少有 3 个顶点,设某环编号最大的顶点为 L ,在环中直接与之相连的两个顶点编号
分别为 M 和 N (M,N < L),则最大编号为 L 的最小环长度即为 Graph(M,L) + Graph(N,L) +
Dist(M,N) ,其中 Dist(M,N) 表示以 0...L-1 号顶点为中间点时的最短路径,刚好符合 Floyd
算法最外层循环到 k=L 时的情况,则此时对 M 和 N 循环所有编号小于 L 的顶点组合即
可找到最大编号为 L 的最小环。再经过最外层 k 的循环,即可找到整个图的最小环。
上面是对无向图的情况
若是有向图,只需稍作改动。注意考虑有向图中 2 顶点即可组成环的情况
 
题目:
D. Shortest Cycle
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given nn integer numbers a1,a2,…,ana1,a2,…,an. Consider graph on nn nodes, in which nodes ii, jj (i≠ji≠j) are connected if and only if, aiaiAND aj≠0aj≠0, where AND denotes the bitwise AND operation.

Find the length of the shortest cycle in this graph or determine that it doesn't have cycles at all.

Input

The first line contains one integer nn (1≤n≤105)(1≤n≤105) — number of numbers.

The second line contains nn integer numbers a1,a2,…,ana1,a2,…,an (0≤ai≤10180≤ai≤1018).

Output

If the graph doesn't have any cycles, output −1−1. Else output the length of the shortest cycle.

Examples
input

Copy
4
3 6 28 9
output

Copy
4
input

Copy
5
5 12 9 16 48
output

Copy
3
input

Copy
4
1 2 4 8
output

Copy
-1
Note

In the first example, the shortest cycle is (9,3,6,28)(9,3,6,28).

In the second example, the shortest cycle is (5,12,9)(5,12,9).

The graph has no cycles in the third example.

分析:对于大于2 * 64个正数的情况直接输出3;其余的情况怼入vector跑floyd求最小环。

代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + ;
vector<ll> vec;
ll g[][];
ll dis[][];
int num; int floyd()
{
ll res = 1e9;
for (int i = ; i <= num; i++)
for (int j = ; j <= num; j++)
dis[i][j] = g[i][j];
for (int k = ; k <= num; k++)
{
for (int i = ; i < k; i++)
for (int j = i + ; j < k; j++)
res = min(res, dis[i][j] + g[i][k] + g[k][j]);
for (int i = ; i <= num; i++)
for (int j = ; j <= num; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
return res != 1e9 ? res : -;
} int main()
{
int n; cin >> n;
int cnt = ;
ll x; for (int i = ; i <= n; i++)
{
scanf("%lld", &x);
if (x > ) cnt++, vec.push_back(x);
}
if (cnt >= )
{
cout << "" << endl;
return ;
}
num = vec.size();
for (int i = ; i < num; i++)
for (int j = i + ; j < num; j++)
g[i + ][j + ] = g[j + ][i + ] = (vec[i] & vec[j]) ? : inf;
cout << floyd() << endl;
}

最小环-Floyd的更多相关文章

  1. timus1004 最小环()Floyd 算法

    通过别人的数据搞了好久才成功,果然还是不够成熟 做题目还是算法不能融会贯通 大意即找出图中至少3个顶点的环,且将环中点按顺序输出 用floyd算法求最小环 因为floyd算法求最短路径是通过中间量k的 ...

  2. 图的连通性问题之连通和最小环——Floyd算法

    Floyd 判断连通性 d[i][j]仅表示i,j之间是否联通 ;k<=n;k++) ;i<=n;i++) ;j<=n;j++) dis[i][j]=dis[i][j]||(dis[ ...

  3. 最小环(floyd以及dijkstra实现+例题)

    最小环定义 最小环是指在一个图中,有n个节点构成的边权和最小的环(n>=3). 一般来说,最小环分为有向图最小环和无向图最小环. 最小环算法: 直接暴力: 设\(u\)和\(v\)之间有一条边长 ...

  4. 图论--最小环--Floyd模板

    #include <iostream> #include <algorithm> #include <cstdio> #include <cstring> ...

  5. floyd求最小环 模板

    http://www.cnblogs.com/Yz81128/archive/2012/08/15/2640940.html 求最小环 floyd求最小环 2011-08-14 9:42 1 定义: ...

  6. hdu 1599 find the mincost route (最小环与floyd算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1599 find the mincost route Time Limit: 1000/2000 MS ...

  7. NOIP 2015提高组复赛

    神奇的幻方 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第 ...

  8. POJ1734 - Sightseeing trip

    DescriptionThere is a travel agency in Adelton town on Zanzibar island. It has decided to offer its ...

  9. poj图论解题报告索引

    最短路径: poj1125 - Stockbroker Grapevine(多源最短路径,floyd) poj1502 - MPI Maelstrom(单源最短路径,dijkstra,bellman- ...

随机推荐

  1. 奇袭(单调栈+分治+桶排)(20190716 NOIP模拟测试4)

    C. 奇袭 题目类型:传统 评测方式:文本比较 内存限制:256 MiB 时间限制:1000 ms 标准输入输出   题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而 ...

  2. Centos6.5安装Redis3.2.8

    1 - Redis安装 redis安装 在网上一搜一大把,但是还是在这里想要能够统一吧,所以这个安装步骤是在Centos6.5 Minimal 上安装redis3.4.8,本次安装是在root 用户下 ...

  3. 个人永久性免费-Excel催化剂功能第49波-标准数据结构表转报表样式结果

    中国的企业信息化,已经过去了20年,企业里也产生了大量的数据,IT技术的信息化管理辅助企业经营管理也已经得到广泛地认同,现在就连一个小卖部都可以有收银系统这样的信息化管理介入.但同时也有一个很现实的问 ...

  4. [02] HEVD 内核漏洞之栈溢出

    作者:huity出处:http://www.cnblogs.com/huity35/版权:本文版权归作者所有.文章在看雪.博客园.个人博客同时发布.转载:欢迎转载,但未经作者同意,必须保留此段声明:必 ...

  5. 计算机原理以及PythonIDE配置和使用

    计算机基础 在巩固了昨日学习知识的基础上,增加了新的内容 整个关于计算机基础的学习可以浓缩为五个问题 什么是编程? 人与计算机之间的交互操作,使人可以奴役计算机从而让其代替人类工作的行为 操作系统有什 ...

  6. ArchSummit分享 | 高德地图App架构演化与实践

    讲师介绍 郝仁杰,高德地图无线开发专家.在7月13日落幕的2019年ArchSummit峰会上就高德地图近几年的App架构演化和实践进行了分享. 背景概述 高德是国内领先的数字地图内容.导航和位置服务 ...

  7. 实用小工具推荐 OpenWrite

    [实用小工具推荐]给技术同学们推荐一款比较好用的工具,可以实现一稿多发,主流的技术渠道基本涵盖了:https://www.openwrite.cn/ 因为工作的关系,认识了很多做技术公众号的小伙伴,同 ...

  8. ubuntu下借助qt creator创建属于自己的共享库

    简介: 在 Windows 上,共享库由 .dll 表示:在 Linux 上,由 .so 表示. Shared Library的优势 共享库,又称动态库或so文件,顾名思义,它可以在可执行文件启动时加 ...

  9. 请使用switch语句和if...else语句,计算2008年8月8日这一天,是该年中的第几天。

    请使用switch语句和if...else语句,计算2008年8月8日这一天,是该年中的第几天. #include <stdio.h> int main() { /* 定义需要计算的日期 ...

  10. 释放你的硬盘空间!——Windows 磁盘清理技巧

    引言 用了Windows系统的各位都知道,作为系统盘的C盘的空间总是一天比一天少.就拿本人的例子来说,自从安装了Win10,就发现,C盘从一开始的10几G占用,到现在慢慢变成了20G.30G….占用只 ...