bzoj

先考虑一种简单的情况,即这个区间是否有相同的数,因为值域大小为1000,那么当区间长度\(>1000\)时,根据鸽巢原理,一定会有两个相同的数,这时候可以直接输出Yuno

进一步的,对于长度为\(len\)的区间,子集的值域为\([0,v*len]\),子集个数为\(2^{len}\),那么可以得到如果满足\(2^{len}>v*len+1\)的区间,一定有两个一样权值的子集(有交就把交去掉),可以解得这个界为\(len\ge 14\).那么对于\(\le 13\)的部分,就暴力枚举每个数在哪个集合中,或者是不在集合中,复杂度\(O(3^{len})\),其实可以\(meet in the middle\),先搜前一半,得到所有选取情况下\(A\)集合权值\(-B\)集合权值的值,然后搜另一个集合,直接查是否存在对应\(A\)集合权值\(-B\)集合权值的相反数,以及是否有那个值为0的方案,复杂度\(O(3^{\frac{len}{2}})\)

至于修改操作,那么每次询问这个值的时候给他修改总修改次数-以及修改次数 次,因为这个修改可以看成在有向图上走\(x\)步,所以可以预处理走一些步数的情况,修改时直接大力跳即可

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=1e5+10,M=1000+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,q,v,to[M][M],cn[N],a[N],bt[N];
void add(int x,int y){while(x<=n) bt[x]+=y,x+=x&(-x);}
int gsm(int x){int an=0;while(x) an+=bt[x],x-=x&(-x);return an;}
int bk[N],st[M<<2],tp,s2[M<<2],t2;
void wk(int x)
{
int dt=gsm(x)-cn[x];
cn[x]+=dt;
while(dt>v) a[x]=to[a[x]][v],dt-=v;
a[x]=to[a[x]][dt];
} int main()
{
n=rd(),q=rd(),v=rd();
for(int i=1;i<=n;++i) a[i]=rd();
for(int i=0;i<v;++i) to[i][0]=i,to[i][1]=1ll*i*i*i%v;
for(int j=2;j<=v;++j)
for(int i=0;i<v;++i)
to[i][j]=to[to[i][j-1]][1];
while(q--)
{
int op=rd(),l=rd(),r=rd();
if(op==2) add(l,1),add(r+1,-1);
else
{
if(r-l+1>=14) puts("Yuno");
else
{
int md=(r-l+1)/2;
bool ok=0;
st[tp=1]=50000;
for(int i=l;i<=l+md-1;++i)
{
wk(i);
int latp=tp;
for(int j=1;j<=latp;++j)
{
st[++tp]=st[j]+a[i]+1;
ok|=st[tp]==50000,++bk[st[tp]];
st[++tp]=st[j]-(a[i]+1);
ok|=st[tp]==50000,++bk[st[tp]];
}
}
s2[t2=1]=50000;
for(int i=l+md;!ok&&i<=r;++i)
{
wk(i);
int latp=t2;
for(int j=1;j<=latp;++j)
{
s2[++t2]=s2[j]+a[i]+1;
ok|=s2[t2]==50000||bk[100000-s2[t2]];
s2[++t2]=s2[j]-(a[i]+1);
ok|=s2[t2]==50000||bk[100000-s2[t2]];
}
}
puts(ok?"Yuno":"Yuki");
while(tp>1) bk[st[tp]]=0,--tp;
}
}
}
return 0;
}

bzoj 4722 由乃的更多相关文章

  1. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  2. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  3. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  4. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

  5. BZOJ 题目整理

    bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...

  6. 【sdoi2013】森林 BZOJ 3123

    Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负整数 ...

  7. 【清华集训】楼房重建 BZOJ 2957

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  8. 【splay】文艺平衡树 BZOJ 3223

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3  ...

  9. bzoj 刷水

    bzoj 3856: Monster 虽然是sb题,,但是要注意h可能<=a,,,开始忘记判了WA得很开心. #include <iostream> #include <cst ...

随机推荐

  1. leetcode378 有序矩阵中第k小的元素

    排序后取数组第k个元素,遍历需要n^2的复杂度,查找插入logn,时间复杂度O(n^2logn).方法很笨,完全就是STL过于牛x运行通过的. class Solution { public: int ...

  2. LC 965. Univalued Binary Tree

    A binary tree is univalued if every node in the tree has the same value. Return true if and only if ...

  3. LC 727. Minimum Window Subsequence 【lock,hard】

    Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof  ...

  4. js如何获取window.location.href跳转后查询字符串的值?

    $("#worked_count").parent().attr("onClick","window.location.href='view/warn ...

  5. 使用 certbot 自动给 nginx 加上 https

    概述 目前,Let's Encrypt 可以算是最好用的 https 证书申请网站了吧.而 certbot 可以算是它的客户端,能够很方便的自动生成 https 证书.我把自己的使用经历记录下来,供以 ...

  6. 能详细说一下action:=cafree这句吗?好多书都没说清楚!

    关闭一个窗口有几种方式:最小化这个窗口,隐藏这个窗口,释放这个窗口,这句话就是说但这个窗口关闭的时候释放这个窗口,它应该是在form的onclose事件里面的 就是form.onclose() beg ...

  7. C基础知识(12):可变参数

    该功能需要使用<stdarg.h>.函数的最后一个参数写成省略号,即三个点号(...),省略号之前的那个参数是int,代表了要传递的可变参数的总数.该文件提供了实现可变参数功能的函数和宏. ...

  8. Python:Base4(map,reduce,filter,自定义排序函数(sorted),返回函数,闭包,匿名函数(lambda) )

    1.python把函数作为参数: 在2.1小节中,我们讲了高阶函数的概念,并编写了一个简单的高阶函数: def add(x, y, f): return f(x) + f(y) 如果传入abs作为参数 ...

  9. 【Python开发】Python中的class继承

    继承是面向对象的重要特征之一,继承是两个类或者多个类之间的父子关系,子进程继承了父进程的所有公有实例变量和方法.继承实现了代码的重用.重用已经存在的数据和行为,减少代码的重新编写,python在类名后 ...

  10. AKKA文档2.1(java版)——什么是AKKA?

    可扩展的实时事务处理 我们相信编写并发.容错.可扩展的应用相当的困难.盖因大多数时候我们一直在使用错误的工具和错误的抽象等级.AKKA就是为了改变这一切的.我们利用角色模型提升了抽象等级,并且提供了一 ...