[CTS2019]珍珠——二项式反演
考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m
其实看起来很像生成函数了
n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而不是维度
有标号,EGF,发现奇偶性有关,其实就是e^x+-e^(-x)这种。(确实很整齐)
所以可以带着e^x化简
如果枚举奇数颜色数,再用两个EGF卷积搞来搞去,很麻烦
还要转化为路径?(可能上下阶乘很多吧。。。),这谁想得到
上面的方法之所以麻烦,是因为二项式展开之后存在三个sigma
不妨尝试去掉一个
怎么去掉?
反演!
钦定至少k个
这样,单纯e^x就简单很多!二项式展开将会少一个∑
处理系数:
然后fk可以卷积!
恰好有i个的gi,直接二项式反演即可!!!!
感觉就是用反演,把三个∑套在一起,变成了两个∑做两遍
就是,
枚举多少个奇数,隐含条件是,剩下的都要是偶数
而反演一下,剩下的就无所谓了
恰好,可以钦定若干个成为奇数,系数是组合数,二项式反演即可。
[CTS2019]珍珠——二项式反演的更多相关文章
- 【题解】CTS2019珍珠(二项式反演+卷积)
[题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...
- LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT
传送门 题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数.问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\( ...
- 【CTS2019】珍珠【生成函数,二项式反演】
题目链接:洛谷 pb大佬说这是sb题感觉好像有点过fan...(我还是太弱了) 首先,设$i$这个数在序列中出现$a_i$次,要求$\sum_{i=1}^D[a_i \ mod \ 2]\leq n- ...
- 洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)
题面传送门 一道多项式的 hot tea 首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lflo ...
- LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演
传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...
- [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演
分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...
- LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演
题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...
- 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...
- 题解-CTS2019 珍珠
题面 CTS2019 珍珠 有 \(n\) 个在 \([1,d]\) 内的整数,求使可以拿出 \(2m\) 个整数凑成 \(m\) 个相等的整数对的方案数. 数据范围:\(0\le m\le 10^9 ...
随机推荐
- c#本地文件配置xml
/// <summary> /// 处理xml文件 /// </summary> public class HandelXmlFile { private string _co ...
- python selenium3 模拟点击+拖动+保存验证码 测试对象 58同城验证码
#!/usr/bin/python # -*- coding: UTF-8 -*- # @Time : 2019/12/5 17:30 # @Author : shenghao/10347899@qq ...
- spark2.0 DataSet操作的一些问题记录
随着新版本的Spark已经逐渐稳定,最近拟将原有框架升级到spark 2.0.还是比较兴奋的,特别是SQL的速度真的快了许多.. 然而,在其中一个操作时却卡住了.主要是dataframe.map操作, ...
- python现状
自从官方宣布 2020 年 1 月后不再更新维护 Python2,已经有一大批开源软件将其抛弃.今天,抛弃 Python2 的名单上又多了一个重磅软件.Python2 是 Python 官方在 200 ...
- Linux磁盘的管理
文件系统 磁盘必须要有文件系统---数据库 文件系统是用来数据存储,数据库是用来管理数据 windows fat32 ntfs exfat linux 单文件系统 inode--索引空间(文件 ...
- Spark集群任务提交流程----2.1.0源码解析
Spark的应用程序是通过spark-submit提交到Spark集群上运行的,那么spark-submit到底提交了什么,集群是怎样调度运行的,下面一一详解. 0. spark-submit提交任务 ...
- Linux/Unix/Cygwin 常用命令
以下只说明各指令的基本用法,若需详细说明,请用man去读详细的manual.[Cygwin通常没有安装 man相关的文件,所以没有man功能] 1.关于文件/目录处理的指令: 1.1 ls 这是最基本 ...
- Python Flask学习笔记(1)
1.搭建虚拟环境 a. 安装 virtualenv : pip3 install virtualenv b. 建立虚拟环境 : 任意目录下建立一个空文件(我的是 Py_WorkSpace) ,在该文件 ...
- 遍历二叉树 - 基于递归的DFS(前序,中序,后序)
上节中已经学会了如何构建一个二叉搜索数,这次来学习下树的打印-基于递归的DFS,那什么是DFS呢? 有个概念就行,而它又分为前序.中序.后序三种遍历方式,这个也是在面试中经常会被问到的,下面来具体学习 ...
- Java&Selenium 鼠标键盘及滚动条控制相关方法封装
一.摘要 本片博文主要展示在使用Selenium with java做web自动化时,一些不得不模拟鼠标操作.模拟键盘操作和控制滚动条的java代码 二.模拟鼠标操作 package util; im ...