[CTS2019]珍珠

考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m

其实看起来很像生成函数了

n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而不是维度

有标号,EGF,发现奇偶性有关,其实就是e^x+-e^(-x)这种。(确实很整齐)

所以可以带着e^x化简

如果枚举奇数颜色数,再用两个EGF卷积搞来搞去,很麻烦

memset0

还要转化为路径?(可能上下阶乘很多吧。。。),这谁想得到

上面的方法之所以麻烦,是因为二项式展开之后存在三个sigma

不妨尝试去掉一个

怎么去掉?

反演!

钦定至少k个

AThousandMoon

这样,单纯e^x就简单很多!二项式展开将会少一个∑

处理系数:

然后fk可以卷积!

恰好有i个的gi,直接二项式反演即可!!!!

感觉就是用反演,把三个∑套在一起,变成了两个∑做两遍

就是,

枚举多少个奇数,隐含条件是,剩下的都要是偶数

而反演一下,剩下的就无所谓了

恰好,可以钦定若干个成为奇数,系数是组合数,二项式反演即可。

[CTS2019]珍珠——二项式反演的更多相关文章

  1. 【题解】CTS2019珍珠(二项式反演+卷积)

    [题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...

  2. LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT

    传送门 题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数.问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\( ...

  3. 【CTS2019】珍珠【生成函数,二项式反演】

    题目链接:洛谷 pb大佬说这是sb题感觉好像有点过fan...(我还是太弱了) 首先,设$i$这个数在序列中出现$a_i$次,要求$\sum_{i=1}^D[a_i \ mod \ 2]\leq n- ...

  4. 洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)

    题面传送门 一道多项式的 hot tea 首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lflo ...

  5. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  6. [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演

    分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...

  7. LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演

    题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...

  8. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  9. 题解-CTS2019 珍珠

    题面 CTS2019 珍珠 有 \(n\) 个在 \([1,d]\) 内的整数,求使可以拿出 \(2m\) 个整数凑成 \(m\) 个相等的整数对的方案数. 数据范围:\(0\le m\le 10^9 ...

随机推荐

  1. ArrayList插入1000w条数据的时间比较分析

    一分钟系列: 读懂GC日志 ArrayList插入1000w条数据之后,我怀疑了jvm... Java JIT性能调优 Java性能优化指南系列(三):理解JIT编译器 准备:调试程序加入VM Opt ...

  2. python-gitlab 统计代码行数

    需求:根据时间段,统计各个研发提交的代码行 实现逻辑:调用原生gitlab接口太复杂,引用python-gitlab 获取commit详情,然后进行统计 ======================= ...

  3. ASP.NET 中的 Session 怎么正确使用

    Session对象用于存储从一个用户开始访问某个特定的aspx的页面起,到用户离开为止,特定的用户会话所需要的信息.用户在应用程序的页面切换时,Session对象的变量不会被清除. 对于一个Web应用 ...

  4. luogu题解 P3629 【[APIO2010]巡逻】树的直径变式

    题目链接: https://www.luogu.org/problemnew/show/P3629 分析 最近被众多dalao暴虐,这道题傻逼地调了两天才知道错哪 不过这题比较良心给你一个容易发现性质 ...

  5. Spring Boot启动流程分析

    引言 早在15年的时候就开始用spring boot进行开发了,然而一直就只是用用,并没有深入去了解spring boot是以什么原理怎样工作的,说来也惭愧.今天让我们从spring boot启动开始 ...

  6. KEIL仿真出现 EVALUATION MODE

    原因是KEIL MDK没有破解,重新破解即可

  7. NETGEAR路由器登录不上 重新获取ip

    当NETGEAR路由器更改了"局域网IP配置",或者重启之后,会出现登录不上的情况 释放IP地址 # ipconfig /release 重新获取 # ipconfig /rene ...

  8. 【小知识】证明 $1$ 到 $n$ 的立方和公式

    scb 发明了小学奥数(确信) Formula \(\sum\limits_{i=1}^n i^3 = (\sum\limits_{i=1}^n i)^2\) Provement 构造一个矩阵 \(a ...

  9. django国际化的简单设置

    设置国际化的具体步骤: 一.国际化 1)效果:针对不同的国家的人可以配置不同的语言(一般是英文和中文,  English  Chinese) 2)目的:增加项目的用户量 3)难度:不难 比较费劲的就是 ...

  10. 《wifi加密破解论文》翻译介绍-wifi不再安全

    前言 wifi的加密协议WPA2已经被破解,影响范围包括所有支持wifi的设备,包括Android,Linux,Apple,Windows,OpenBSD,联发科技,Linksys等.其中对Andro ...