第一步,打表找规律,发现自己的表连3的小样例都过不去,还不如自己手模,自己手跑了5以下的样例,然后发现毫无规律可言……

第二步,想出一种错误做法,首先n>k必零,人比座都多……然后粘一下图:

基本思想单步容斥,1除去不可行的,后面那一坨求和是用实际意义想的,前i个人恰好从k个位置中,把最后i个给选掉了(包括移动的过程),然后剩下的n-i个人从k个座位中选中前k-i个则不会牺牲,否则GG,还是单步容斥,1除去不死的情况就是牺牲的。

然后化简,把分母化成n!*n^k这种常数,算分子求和,然后是小点,k<=3的,都过了,特别兴奋,准备上高精,结果试了一个3,5,心里一下就凉了,仔细思考一下,发现确实算重了,画了个3,4,发现有的位置由于那个Combine算重了,再改就多步容斥了。

而且这种题输出分数,又是高精,肯定不会是上式那种变态的形式。

第三步,重新打表,发现与(k+1)关系匪浅(因为k=9那一列全是10的倍数……),规律有了。

下面给出正解:

思路有些反人类,我们都是做环题拆环(即环排列),这题需要我们建环,首先在n<=k的前提下,我们再插入第k+1把椅子,是所有椅子构成一个环,这样想一下,就不可能有人没座了(因为会转圈,而人数小于椅子数,肯定人人有座),所以情况数为(k+1)^n,然后根据换排列的知识,肯定有重复情况(即将圆旋转可以得到同一个圆),当然此时你也可以用拆环的思想(刚建完就拆,Orz),不过一般都是除以元素总数,即k+1,现在就是(k+1)^(n-1),可是我们比原题多了一把椅子,怎么办呢?从剩下的k+1-n把空椅子中抽一把就好了……这样的话就是符合题意的条件,大家可以自己把式子写下来再想想。

总方案k^n没什么问题,那答案就是(k+1)^(n-1)*(k+1-n)/(k^n)喽。

然后向别人询问了高精gcd……其实用不到,做这种分数题小的求gcd,大的直接唯一分解定理拆,具体实现看看代码吧,不太好说,大概就是把分子拆到一个数组里,把分母拆到一个数组里,比较一下,那个数量多就乘到谁身上,高精还是要自己打的好。

ps:一开始以为会因为玄学高精卡时间,结果自家oj跑的还挺快,就没亿进制优化,想打的自己尝试一下吧。

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
struct Bint{
int a[];
int len;
void clear(){
memset(a,,sizeof(a));
len=;
a[]=;
}
friend void operator *(Bint &x,int y){
int res=;
for(int i=;i<=x.len;i++){
x.a[i]=x.a[i]*y+res;
res=x.a[i]/;
x.a[i]%=;
}
while(res){
x.a[++x.len]=res%;
res/=;
}
while(x.a[x.len]==&&x.len>) x.len--;
}
void print(){
for(int i=len;i>=;i--)
printf("%d",a[i]);
}
}afz,afm;
int a[],fz[],fm[],n,k,T;
int p[];
bool judge(int x){
for(int i=;i<=sqrt(x);i++)
if(x%i==) return ;
return ;
}
void doprime(){
for(int i=;i<=;i++)
if(judge(i)) p[++p[]]=i;
}
void multfz(int x){
for(int i=;i<=p[];i++)
while(x%p[i]==) {
fz[i]++;
x/=p[i];
}
}
void multfm(int x){
for(int i=;i<=p[];i++)
while(x%p[i]==){
fm[i]++;
x/=p[i];
}
}
void work(){
for(int i=;i<=p[];i++){
if(fz[i]>fm[i])
for(int j=;j<=fz[i]-fm[i];j++)
afz*p[i];
else if(fz[i]==fm[i]) continue;
else
for(int j=;j<=fm[i]-fz[i];j++)
afm*p[i];
}
afz.print();
putchar(' ');
afm.print();
putchar('\n');
}
int main(){
doprime();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&k);
memset(fz,,sizeof(fz));
memset(fm,,sizeof(fm));
afz.clear();afm.clear();
if(n>k){puts("0 1");continue;}
for(int i=;i<n;i++)
multfz(k+);
multfz(k+-n);
for(int i=;i<=n;i++)
multfm(k);
/* for(int i=1;i<=p[0];i++)
cout<<fz[i]<<" ";cout<<endl;
for(int i=1;i<=p[0];i++)
cout<<fm[i]<<" ";cout<<endl;*/
work();
}return ;
}

Zjoi2011看电影(movie)的更多相关文章

  1. 【BZOJ2227】[ZJOI2011]看电影(组合数学,高精度)

    [BZOJ2227][ZJOI2011]看电影(组合数学,高精度) 题面 BZOJ 洛谷 题解 这题太神仙了. 首先\(K<N\)则必定无解,直接特判解决. 现在只考虑\(K\ge N\)的情况 ...

  2. [ZJOI2011]看电影(组合数学,高精度)

    [ZJOI2011]看电影 这题模型转化很巧妙.(神仙题) 对于这种题首先肯定知道答案就是合法方案除以总方案. 总方案显然是\(k^n\). 那么考虑怎么算合法方案. 当\(n>k\)的时候显然 ...

  3. [ZJOI2011]看电影(MOVIE)

    题目描述 到了难得的假期,小白班上组织大家去看电影.但由于假期里看电影的人太多,很难做到让全班看上同一场电影,最后大家在一个偏僻的小胡同里找到了一家电影院.但这家电影院分配座位的方式很特殊,具体方式如 ...

  4. Zjoi2011 看电影

    最近在学习一些概率的东西.. 一个随机试验称为 Laplace 试验,当且仅当它满足如下两个条件: (ⅰ) 试验结果 (样本点) 的个数是有限的.(Ω 是有限集) (ⅱ) 任意两个基本事件的概率均相等 ...

  5. [ZJOI2011]看电影(组合数学/打表+高精)

    Description 到了难得的假期,小白班上组织大家去看电影.但由于假期里看电影的人太多,很难做到让全班看上同一场电影,最后大家在一个偏僻的小胡同里找到了一家电影院.但这家电影院分配座位的方式很特 ...

  6. BZOJ2227 [Zjoi2011]看电影(movie)

    Description \(k\)个座位,\(n\)个人依次过来,每人随机从\(k\)个座位中选择一个,并从它开始不停向后走直到遇到空座位坐下.求所有人都能坐下的概率(即没有人走到第\(k+1\)个位 ...

  7. 【BZOJ2227】【ZJOI2011】看电影 [组合数][质因数分解]

    看电影 Time Limit: 10 Sec  Memory Limit: 259 MB[Submit][Status][Discuss] Description 到了难得的假期,小白班上组织大家去看 ...

  8. HDU 3496 Watch The Movie(看电影)

    HDU 3496 Watch The Movie(看电影) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] New sem ...

  9. 开始ubuntu 14.04 的装X模式---终端模式下中文输入,听歌,上irc 开启framebuffer看电影 截图

    先上图吧 卡卡的全是在tty1 下的操作,看电影,听歌,截图 ,看图  ,上irc 等等,相当适合在小白面前装屁! 需要安装的软件: 为了能正常显示中文:安装fbterm sudo apt-get i ...

随机推荐

  1. JS基础_while的练习2

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  2. CF10D-LCIS题解--线性DP+打印方案

    题目链接: https://www.luogu.org/problemnew/show/CF10D 方法一 分析 \(LCS\)和\(LIS\)已经成烂大街的知识了,可是当这两个合并起来成为\(LCI ...

  3. 几种常用的java 实现反转的方法———reverse

    1.最简单的方法 public static String reverse1(String str) return new StringBuffer(str).reverse().toString() ...

  4. python之file 方法

    file 对象使用 open 函数来创建,下表列出了 file 对象常用的函数: 1    file.close() close() 方法用于关闭一个已打开的文件.关闭后的文件不能再进行读写操作, 否 ...

  5. ansible 配置文件设置

    目录 ansible 配置文件设置 一.ansible configuration settings 二.ansible 配置文件查找顺序(从上到下,依次查找) 三.附录ansible配置参数 ans ...

  6. 【异常】lockfile.AlreadyLocked: ~/airflow/airflow-scheduler.pid is already locked

    1 完整异常信息 File "/usr/bin/airflow", line 32, in <module> args.func(args) File "/u ...

  7. 【转】awk学习笔记

    Awk学习笔记 整理:Jims of 肥肥世家 <jims.yang@gmail.com> Copyright © 2004 本文遵从GPL协议,欢迎转载.修改.散布. 第一次发布时间:2 ...

  8. SQL 语句 连接

    SQL连接可以分为内连接.外连接.交叉连接. 数据库数据:             book表                                          stu表 1.内连接 ...

  9. PXE+Kickstart实现批量化无人值守安装

    centos7下进行kickstart配置 配置kickstart时需要pxe芯片,为获取ip地址 1.先安装dhcpd服务器 yum install -y dhcpd 1-1.配置dhcp的配置文件 ...

  10. 白话跨域CORS

    跨域访问控制是浏览器和服务器按照约定,协同工作,守护安全的一种机制. 其中认为浏览器和服务器是安全的,但是浏览器上运行的页面(HTML+JS)可能不安全. 分几种不同方式. 页面跨域简单请求(Get/ ...