Tracking of Features and Edges
Joint Tracking of Features and Edges
1. LK光流
基本LK光流
运动假设:
\]
一阶近似得到:
\]
由于Aperture problem
,需要假设领域像素运动相同,并作为约束,便可以求解
\]
2. Horn-Schunck光流
\]
\(\lambda\)为正则项参数,相当于加了个平滑约束.
\(\nabla ^2u, \nabla ^2v\) 为\(u,v\)的拉普拉斯算子,可以近似为:
\]
领域\(u\)的均值来表示.
3. Joint Tracking
\]
E_S(i) = ((u_i-\hat{u}_i)^2+(v_i-\hat{v}_i)^2)
\]
\((\hat{u}_i,\hat{v}_i)^T\) 为期望的偏移量,可以通过任何一种方式获取.
Instead, we predict the motion displacement of a pixel by fitting an affine motion model
to the displacements of the surrounding features, which are inversely weighted according to their distance to the pixel.
We use a Gaussian weighting function on the distance, with σ = 10 pixels.
对于周围的特征拟合一个Affine变换来获取?
利用特征周围的特征点求解一个预测值:
- 直接利用领域内\((u,v)\)的平均值
特征选择:
\]
本文取: \(\eta=0.1\)
4. Unified Point-Edgelet Feature tracking
- 进一步优化,选取
Edgelet
而不是边缘的点作为track的目标 - 预测的\((\hat{u},\hat{v})\)不是平均值,而是拟合一个Affine变换获得(u,v),并且拟合变换的权重根据距离和scale进行计算
5. \(u,v\)预测值如何计算
利用领域特征的\(u,v\)取加权来进行计算获得
6. 接下来工作
这些方法的思路都是利用点和边缘来互补操作,使得二者能够互相提升各自的缺陷,接下来基本参考joint_tracking的思路,但是不取平均值,而是进行加权操作,简单尝试.
7. 参考文献
- Birchfield S T , Pundlik S J . Joint tracking of features and edges
CVPR 2008
- Sundararajan K . Unified point-edgelet feature tracking[J]. Dissertations & Theses - Gradworks, 2011.
Tracking of Features and Edges的更多相关文章
- 深度学习Deep learning
In the last chapter we learned that deep neural networks are often much harder to train than shallow ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- (zhuan) Notes on Representation Learning
this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/ Notes on Repr ...
- A successful Git branching model——经典篇
A successful Git branching model In this post I present the development model that I’ve introduced f ...
- 图像中的artifacts
artifacts 瑕疵 伪影(Artifacts) 伪影(Artifacts)-CT-基础术语 - 影像园 http://www.xctmr.com/baike/ct/c34b5413e305b45 ...
- 神奇的 ViewDragHelper,让你轻松定制拥有拖拽能力的 ViewGroup
为了吸引大家的注意力,先给大家看一张动图: 相信这种效果大家都见过吧?我第一次见到这样的效果时,心里也痒痒的,急于想实现这种功能,后来因为拖延症的问题,就一直没有去弄这件事.现在这段时间,工作比较轻闲 ...
- Convolution Fundamental I
Convolution Fundamental I Foundations of CNNs Learning to implement the foundational layers of CNN's ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
随机推荐
- Ubuntu安装依赖文件
我们在安装软件的时候,有时会出现由于依赖的软件没有被安装,会导致软件安装的失败,其实我们可以用命令来安装依赖的软件,这里以Ubuntu为例进行说明. 我在安装wps-office的时候,显示安装成功了 ...
- MySQL 使用连接池封装pymysql
备注:1,记得先修改连接的数据库哦,(用navicat更方便一点):2,分开两个py文件写入,运行sqlhelper.py文件 一.在utils.py中写 import pymysqlfrom DBU ...
- Security Study
1.WebGoat http://www.owasp.org.cn/ 学习Web应用漏洞最好的教程----WebGoat http://blog.csdn.net/bill_lee_sh_cn/art ...
- ckeditor不能粘贴word的问题如何解决
自动导入Word图片,或者粘贴Word内容时自动上传所有的图片,并且最终保留Word样式,这应该是Web编辑器里面最基本的一个需求功能了.一般情况下我们将Word内容粘贴到Web编辑器(富文本编辑器) ...
- leetcode解题报告(2):Remove Duplicates from Sorted ArrayII
描述 Follow up for "Remove Duplicates": What if duplicates are allowed at most twice? For ex ...
- Liunx之基础学习
用户提权命令之-sudo sudo命令用来以其他身份来执行命令,预设的身份为root.在/etc/sudoers中设置了可执行sudo指令的用户.若其未经授权的用户企图使用sudo,则会发出警告的邮件 ...
- LVM问题-----Insufficient Free Extents for a Logical Volume
Linux LVM学习——Insufficient Free Extents for a Logical Volume 如下所示,在创建LV的时候,偶尔会遇到“Volume group "x ...
- JavaEE三大框架的整合
JavaEE三大框架的整合 ...
- django中安装pillow ValueError: zlib is required unless explicitly disabled using --disable-zlib, aborting
在windows系统上,使用 pip install pillow安装pillow时 报错 在使用 easy_install Pillow 方式安装成功,默认是最高版本 如果需要在安装时,指定安装版 ...
- iOS开发 Error: CGImageProviderCreate: invalid image provider size
一般可拉伸的图片(俗称点9图片)会放到images.xcassets目录里,然后对图片进行Slicing,但是当对一张图片进行slicing的left和right都是0的话,在iOS7.0上运行会出现 ...