CH6201 走廊泼水节[最小生成树]
描述
【简化版题意】给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树。求增加的边的权值总和最小是多少。
我们一共有N个OIER打算参加这个泼水节,同时很凑巧的是正好有N个水龙头(至于为什么,我不解释)。N个水龙头之间正好有N-1条小道,并且每个水龙头都可以经过小道到达其他水龙头(这是一棵树,你应该懂的..)。但是OIER门为了迎接中中的挑战,决定修建一些个道路(至于怎么修,秘密~),使得每个水龙头到每个水龙头之间都有一条直接的道路连接(也就是构成一个完全图呗~)。但是OIER门很懒得,并且记性也不好,他们只会去走那N-1条小道,并且希望所有水龙头之间修建的道路,都要大于两个水龙头之前连接的所有小道(小道当然要是最短的了)。所以神COW们,帮那些OIER们计算一下吧,修建的那些道路总长度最短是多少,毕竟修建道路是要破费的~~
输入格式
本题为多组数据~
第一行t,表示有t组测试数据
对于每组数据
第一行N,表示水龙头的个数(当然也是OIER的个数);
2到N行,每行三个整数X,Y,Z;表示水龙头X和水龙头Y有一条长度为Z的小道
输出格式
对于每组数据,输出一个整数,表示修建的所有道路总长度的最短值。
样例输入
2
3
1 2 2
1 3 3
4
1 2 3
2 3 4
3 4 5
样例输出
4
17
数据范围与约定
- 每个测试点最多10组测试数据
50% n<=1500;
100% n<=6000
100% z<=100
样例解释
第一组数据,在2和3之间修建一条长度为4的道路,是这棵树变成一个完全图,且原来的树依然是这个图的唯一最小生成树.
解析:
我们可以按照一种类似Kruskal的思路来做。把边权排个序依次加入并查集。
思路是这样,每次往并查集中加入一条边时,除非是第一条加入的边,那么势必会产生一张没有联通完全的图。按照题意,我们最后得出的是一张完全图,所以说每次加入边的时候我们就可以把没连上的点连上了,反正他们最后势必要连,不如连更小边权的边。我们用Sx和Sy表示某两个不交叉的并查集的元素个数,这时我们假设现在要在两个并查集之间连一条当前的最小边z,假设它的边权为val,其它没有连接的节点如果连接起来,而且我们想让它们的边权最小,就会产生Sx*Sy-1个点相连的情况,以及多出(val+1)*(Sx*Sy-1)的边权。
这就是增加的边权了,而且它势必最小。
参考代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define N 10010
using namespace std;
int s[N],fa[N];
struct node{
int x,y,val;
}g[N];
bool operator<(node a,node b){
return a.val<b.val;
}
int get(int x)
{
if(fa[x]==x) return x;
return fa[x]=get(fa[x]);
}
int main()
{
int t;
cin>>t;
while(t--)
{
memset(s,,sizeof(s));
memset(fa,,sizeof(fa));
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d%d%d",&g[i].x,&g[i].y,&g[i].val);
for(int i=;i<=n;i++) fa[i]=i,s[i]=;
sort(g+,g+n);
int ans=;
for(int i=;i<n;i++){
int x=get(g[i].x),y=get(g[i].y),val=g[i].val;
if(x==y) continue;
fa[x]=y;
ans+=(long long)(val+)*(s[x]*s[y]-);
s[y]+=s[x];
}
cout<<ans<<endl;
}
return ;
}
CH6201 走廊泼水节[最小生成树]的更多相关文章
- CH6201 走廊泼水节【最小生成树】
6201 走廊泼水节 0x60「图论」例题 描述 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 我 ...
- CH6201走廊泼水节
题目链接: CH6201 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 输入格式 本题为多组数据~ ...
- [tyvj-1391]走廊泼水节 最小生成树
做克鲁斯卡尔的时候维护一个并查集即可. #include <iostream> #include <cstdio> #include <cstring> #incl ...
- 「CH6201」走廊泼水节
「CH6201」走廊泼水节 传送门 考虑 \(\text{Kruskal}\) 的过程以及用到一个最小生成树的性质即可. 在联通两个联通块时,我们肯定会选择最小的一条边来连接这两个联通块,那么这两个联 ...
- [Tvvj1391]走廊泼水节(最小生成树)
[Tvvj1391]走廊泼水节 Description 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 完全图:完 ...
- 奇葩最小生成树--->走廊泼水节(tyvj1391)
题目描述 话说,中中带领的OIER们打算举行一次冬季泼水节,当然这是要秘密进行的,绝对不可以让中中知道.不过中中可是老江湖了,当然很快就发现了我们的小阴谋,于是他准备好水枪迫不及待的想要加入我们了. ...
- 【CH6201】走廊泼水节
题目大意:给定一棵树,要求增加若干条边,将其转化为完全图,且该完全图以该树为唯一的最小生成树,求增加的边权最小是多少. 题解:完全图的问题一般要考虑组合计数.重新跑一遍克鲁斯卡尔算法,每次并查集在合并 ...
- tyvj 1391 走廊泼水节【最小生成树】By cellur925
题目传送门 题意简化:给你一棵树,要求你加边使它成为完全图(任意两点间均有一边相连) ,满足原来的树是这个图的最小生成树.求加边的价值最小是多少. 考虑Kruskal的过程,我们每次找一条最短的,两边 ...
- Joy OI【走廊泼水节】题解--最小生成树推论变式
题目链接: http://joyoi.org/problem/tyvj-1391 思路: 首先这需要一个推论: "给定一张无向图,若用\(k(k<n-1)\)条边构成一个生成森林(可以 ...
随机推荐
- DB2 索引(2)
最近研究了一点DB2索引相关的东西,做一个总结: (1)在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构: (2)在经常用连接的列(join)上建索引,这些列主要是一些外键,可以加快连接的速 ...
- WIN10桌面无创建文件夹选项,无法创建文件
在桌面或其他磁盘,右键没有新建选项,无法新建文件夹或文档. 右键桌面左下角开始按钮,点击:命令提示符(管理员) 弹出,Windows命令处理程序对话框,点击是 粘贴内容: cmd /k r ...
- Appium移动自动化测试-----(九) appium API 之应用操作
1.安装应用 方法: installApp() 安装应用到设备中去.需要apk包的路径. driver.installApp("path/to/my.apk"); driver.i ...
- pv回收
学习cloudman中的k8s 152课,创建pod时,需要在k8s-host2 中挂着到在k8s-master 中/nfs中创建的挂载目录,结果提示没有/nfs/pv1 root@k8s-maste ...
- 洛谷 题解 UVA12661 【有趣的赛车比赛 Funny Car Racing】
[题意] 在一个赛车比赛中,赛道有\(n(n<=300)\)个交叉点和\(m(m<=50000)\)条单向道路.有趣的是,每条道路都是周期性关闭的.每条道路用5个整数\(u,v,a,b,t ...
- GraphHopper-初识
GraphHopper GraphHopper is a fast and Open Source road routing engine. Is fast and memory efficie ...
- [转帖]QC 和 PD:关于你所不知道的快充
QC 和 PD:关于你所不知道的快充 http://www.sohu.com/a/276214250_465976 2018-11-18 06:02 当我们使用支持 PD 或者 QC 快充协议的电源适 ...
- deepin linux 打开ssh服务
首先,更新一下软件源,打开"终端窗口",输入"sudo apt-get update"-->回车-->" 输入当前登录用户的管理员密码&q ...
- 机器学习之逻辑回归(Logistic)笔记
在说逻辑回归之前,可以先说一说逻辑回归与线性回归的区别: 逻辑回归与线性回归在学习规则形式上是完全一致的,它们的区别在于hθ(x(i))为什么样的函数 当hθ(x(i))=θTx(i)时,表示的是线性 ...
- java连接腾讯云上的redis
目录 腾讯云上的配置 redis连接单机和集群 依赖 pom.xml redis参数的配置文件 遗留问题 腾讯云上的配置 在安全组上打开相关的端口即可 "来源" 就是你的目标服务器 ...