[NOI2005]月下柠檬树
题意

F.A.Qs | Home | Discuss | ProblemSet | Status | Ranklist | Contest | 入门OJ | ModifyUser autoint | Logout | 捐赠本站 |
---|
Problem 1502. -- [NOI2005]月下柠檬树
1502: [NOI2005]月下柠檬树
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 1534 Solved: 813
[Submit][Status][Discuss]
Description

Input
Output
输出1个实数,表示树影的面积。四舍五入保留两位小数。
Sample Input
10.0 10.00 10.00
4.00 5.00
Sample Output
HINT
Source
[Submit][Status][Discuss]
HOME
Back
中文
فارسی
English
ไทย
分析
参照GFY的题解。
首先,做这题需要知道一点:一个圆从任意一个角度投影都永远是一个圆。
我们可以画出一个简图如下:
如图,这棵树倒影之后,有图中两个圆心p1,p2,他们的横坐标即为这颗树上他们原先的高度乘以cotΘ,而他们的半价却不会变化,因为月光是平行光,所以在圆面与地面平行时,两点间距离不会变化。
如图,倒影最终是圆和他们之间的公切线构成的图形,最右边的点可以看做是半径为eps的圆。之后,可以利用simpson积分公式计算,simpson(l,r)=(f(l)+f(r)+4f(mid))(r-l)/6,若是精度差距大可以继续递归,注意:本题的eps要1e-6以下才能过。
时间复杂度?不知道
代码
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
typedef long long ll;
co double eps=1e-6;
co int N=501;
struct Point{
double x,y;
}s[N],e[N],a[N],b[N];
int n;
il double sqr(double x) {return x*x;}
void cal(Point&s,Point&e,Point a,Point b){
if(fabs(a.y-b.y)<eps) return s=a,e=b,void();
double k=(b.y-a.y)/(b.x-a.x);
s.x=a.x-k*a.y,s.y=sqrt(sqr(a.y)-sqr(a.x-s.x));
e.x=b.x-k*b.y,e.y=sqrt(sqr(b.y)-sqr(b.x-e.x));
// s=(Point){a.x-k*a.y,sqrt(sqr(a.y)-sqr(a.x-s.x))};
// e=(Point){b.x-k*b.y,sqrt(sqr(b.y)-sqr(b.x-e.x))};
}
double f(double x){
double y=0;
for(int i=1;i<=n+1;++i)if(fabs(x-a[i].x)<=a[i].y)
y=std::max(y,sqrt(sqr(a[i].y)-sqr(x-a[i].x)));
for(int i=1;i<=n;++i)if(a[i+1].x-a[i].x-fabs(a[i].y-a[i+1].y)>eps&&s[i].x<=x&&x<=e[i].x)
y=std::max(y,s[i].y+(x-s[i].x)*(e[i].y-s[i].y)/(e[i].x-s[i].x));
return y;
}
double work(double L,double R){
double mid=(L+R)/2;
return (f(L)+f(R)+f(mid)*4)*(R-L)/6;
}
double simpson(double L,double R){
double mid=(L+R)/2;
double x1=work(L,mid),x2=work(mid,R),x3=work(L,R);
if(fabs(x1+x2-x3)<eps) return x1+x2;
else return simpson(L,mid)+simpson(mid,R);
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
double theta;
scanf("%d%lf",&n,&theta);
theta=1/tan(theta);
double h=0;
for(int i=1;i<=n+1;++i){
scanf("%lf",&a[i].x);
h+=a[i].x,a[i].x=h*theta;
}
for(int i=1;i<=n;++i) scanf("%lf",&a[i].y);
a[n+1].y=a[n+2].y=0;
double L=a[1].x,R=a[n+1].x;
for(int i=1;i<=n;++i){
L=std::min(L,a[i].x-a[i].y),R=std::max(R,a[i].x+a[i].y);
if(a[i+1].x-a[i].x-fabs(a[i+1].y-a[i].y)>eps) // not in
cal(s[i],e[i],a[i],a[i+1]);
}
printf("%.2lf\n",2*simpson(L,R));
return 0;
}
[NOI2005]月下柠檬树的更多相关文章
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...
- [NOI2005]月下柠檬树[计算几何(simpson)]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1169 Solved: 626[Submit][Status] ...
- 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分
[BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...
- 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...
- 1502: [NOI2005]月下柠檬树 - BZOJ
Description Input 文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度).第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的 ...
- [NOI2005]月下柠檬树(计算几何+积分)
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...
- 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...
- BZOJ1502:[NOI2005]月下柠檬树——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...
- 【bzoj1502】 NOI2005—月下柠檬树
http://www.lydsy.com/JudgeOnline/problem.php?id=1502 (题目链接) 今天考试题,从来没写过圆的面积之类的东西..GG 题意 一颗树由n个圆台组成,现 ...
随机推荐
- tomcat配置SLL证书
1.将jks证书复制到conf目录下 2.解除注释:88行至96行 修改代码 <Connector port="443" protocol="org.apache. ...
- [转帖]ARM发布Ethos-N57/N73 NPU、Mali-G57 Valhall GPU和Mali-D37 DPU
ARM发布Ethos-N57/N73 NPU.Mali-G57 Valhall GPU和Mali-D37 DPU https://www.cnbeta.com/articles/tech/902417 ...
- CentOS 7 下安装 MySQL 5.7
从 CentOS 7 系统开始,MariaDB 成为 yum 源中默认的数据库安装包.在 CentOS 7 及以上的系统中使用 yum 安装 MySQL 包将无法使用 MySQL.您可以选择使用完全兼 ...
- 【工具】导入导出 Excel
文章目录 前言 当前支持的功能 方法api 配置 如何使用(Demo) 实现思路(该工具类可正确的一个大前提) 后记 前言 之前写的项目中,有个需求,需要导出导入Excel表格: 本来很简单的一件事, ...
- [C++] 习题 2.18 倒序查找字串
目录 前置技能 字符串 KMP 算法 需求描述 概要设计 具体实现 string.cpp strmatching.cpp main.cpp 倒序查找字串: 设计一个算法,在串 str 中查找字串 su ...
- mysql数据库语言分类
MySQL的sql语言分类DML.DQL.DDL.DCL. MySQL的sql语言分类DML.DQL.DDL.DCL. SQL语言一共分为4大类:数据定义语言DDL,数据操纵语言DML,数据查询语 ...
- 二十三、uevnet机制和U盘自动挂载
一.uevent机制 在分析之前,我们首先要知道uevent作用是什么.在此我们先来看一个uevent机制的框架图: 该图片来自:Linux设备模型(3)_Uevent 通过图片我们可以确定ueven ...
- docker 实践五:端口映射和容器互联
本篇是关于 docker 容器的端口映射和容器之间的互联内容. 注:环境为 CentOS7,docker 19.03. docker 的容器除了能连接网络外,在许多时候,我们需要让多个容器来协同完成任 ...
- MRR,BKA,ICP相关
MRR Multi-Range Read,多范围读,5.6以上版本开始支持 工作原理&优化效果: 将查询到的辅助索引结果放在一个缓冲(read_rnd_buffer_size = 4M)中 将 ...
- python 流程判断
import getpass# print("hello word") ## name= 'pangxiao'# mix_name=name# print(mix_name,nam ...