递归版

UOJ34多项式乘法

//容易暴栈,但是很好理解
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const int mo=1e9+7;
const int N=400005;
const double pi=acos(-1);
using namespace std;
struct arr
{
double x,y;
arr() {x=y=0;}
arr(double x,double y):x(x),y(y) {}
}a[N],b[N],c[N];
arr operator +(arr x,arr y) {return arr(x.x+y.x,x.y+y.y);}
arr operator -(arr x,arr y) {return arr(x.x-y.x,x.y-y.y);}
arr operator *(arr x,arr y) {return arr(x.x*y.x-x.y*y.y,x.x*y.y+y.x*x.y);}
int n,m,fn;
void FFT(arr *y,int n,int t)
{
if(n==1) return;
arr a0[n>>1],a1[n>>1];
for(int i=0;i<n;i+=2) a0[i>>1]=y[i],a1[i>>1]=y[i+1];
FFT(a0,n>>1,t),FFT(a1,n>>1,t);
arr w1(cos(2*pi/n),t*sin(2*pi/n)),w0(1,0);
for(int i=0;i<n>>1;i++,w0=w0*w1) y[i]=a0[i]+w0*a1[i],y[i+(n>>1)]=a0[i]-w0*a1[i];
}
int main()
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].x);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].x);
fn=1;
while(fn<=n+m) fn<<=1;
FFT(a,fn,1),FFT(b,fn,1);
for(int i=0;i<fn;i++) c[i]=a[i]*b[i];
FFT(c,fn,-1);
for(int i=0;i<=n+m;i++) printf("%.0lf ",abs(c[i].x/fn));
}

非递归版

BZOJ3527[Zjoi2014]力

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const int mo=1e9+7;
const int N=400005;
const double pi=acos(-1);
using namespace std;
struct arr
{
double x,y;
arr() {x=y=0;}
arr(double x1,double y1) {x=x1,y=y1;};
}q[N],r[N],f[N],f1[N];
int n,fn;
double qq[N];
arr operator + (arr x,arr y) {return arr(x.x+y.x,x.y+y.y);}
arr operator - (arr x,arr y) {return arr(x.x-y.x,x.y-y.y);}
arr operator * (arr x,arr y) {return arr(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
void FFT(arr *a,int n,int t)
{
for(int i=0,p=0;i<n;i++)
{
if(i<p) swap(a[i],a[p]);
for(int j=n>>1;(p^=j)<j;j>>=1);
}
for(int m=2;m<=n;m<<=1)
{
int half=m>>1;
for(int i=0;i<half;i++)
{
arr w0(cos(i*pi*t/half),sin(i*pi*t/half)),aj;
for(int j=i;j<n;j+=m) aj=a[j],a[j]=aj+w0*a[j+half],a[j+half]=aj-w0*a[j+half];
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf",&qq[i]),r[i].x=1.0/i/i,q[i].x=qq[i];
for(fn=1;fn<n*2+1;fn<<=1);
FFT(q,fn,1),FFT(r,fn,1);
for(int i=0;i<fn;i++) f[i]=q[i]*r[i];
FFT(f,fn,-1);
memset(q,0,sizeof(q));
memset(r,0,sizeof(r));
for(int i=1;i<=n;i++) r[i].x=1.0/i/i,q[i].x=qq[n-i+1];
FFT(q,fn,1),FFT(r,fn,1);
for(int i=0;i<fn;i++) f1[i]=q[i]*r[i];
FFT(f1,fn,-1);
for(int i=1;i<=n;i++) printf("%.3lf\n",(f[i].x-f1[n-i+1].x)/fn);
}

快速傅立叶变换FFT模板的更多相关文章

  1. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  2. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  3. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  4. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  5. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  6. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

  7. 傅立叶变换—FFT

    FFT(快速傅立叶变换)使用“分而治之”的策略来计算一个n阶多项式的n阶DFT系数的值.定义n为2的整数幂数,为了计算一个n阶多项式f(x),算法定义了连个新的n/2阶多项式,函数f[0](x)包含了 ...

  8. NVIDIA GPU的快速傅立叶变换

    NVIDIA GPU的快速傅立叶变换 cuFFT库提供GPU加速的FFT实现,其执行速度比仅CPU的替代方案快10倍.cuFFT用于构建跨学科的商业和研究应用程序,例如深度学习,计算机视觉,计算物理, ...

  9. 傅立叶变换系列(五)快速傅立叶变换(FFT)

    说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真 ...

随机推荐

  1. [转帖]注解机制(Annotation,区别于comment)

    [19/04/16-星期二] 注解机制(Annotation,区别于comment(传统意义上的注释))   一.概念 作用: ——不是程序本身,可以对程序作出解释.(这一点和注释没什么区别) ——可 ...

  2. MyBatis学习存档(2)——核心配置文件

    一.xml节点结构 configuration为根节点 properties 可以配置在Java 属性配置文件中 settings 修改 MyBatis 在运行时的行为方式 typeAliases 为 ...

  3. X86逆向15:OD脚本的编写技巧

    本章节我们将学习OD脚本的使用与编写技巧,脚本有啥用呢?脚本的用处非常的大,比如我们要对按钮事件进行批量下断点,此时使用自动化脚本将大大减小我们的工作量,再比如有些比较简单的压缩壳需要脱壳,此时我们也 ...

  4. 并不对劲的P5589

    题目大意 有\(n\)(\(n\leq 10^9\))个数:\(1,2,...,n\),每次操作是随机取一个没被删除的数\(x\),并删去\(x,x^2,x^3,...\). 求期望几次删完所有数. ...

  5. java 异常捕捉 ( try catch finally ) 你真的掌握了吗?

    掌握下面几条原则就可以完全解决“当try.catch.finally遭遇return”的问题. 原则:1.finally语句块中的代码是一定会执行的,而catch块中的代码只有发生异常时才会执行. 2 ...

  6. WAV格式文件无损合并&帧头数据体解析(python)(原创)

    一,百度百科 WAV为微软公司(Microsoft)开发的一种声音文件格式,它符合RIFF(Resource Interchange File Format)文件规范,用于保存Windows平台的音频 ...

  7. 题解 P2859 【[USACO06FEB]摊位预订Stall Reservations】

    题目链接: https://www.luogu.org/problemnew/show/P2859 思路: 首先大家会想到这是典型的贪心,类似区间覆盖问题的思路,我们要将每段时间的左端点从小到大排序, ...

  8. maven:无效的目标发行版:11

    maven:无效的目标发行版:11 我之前在博客里是不记录bug和error的处理的,昨天听了一个资深程序员的视频,决定要改习惯了,记录一些自己平时遇到的问题 这个是我在mvn clean insta ...

  9. js安全类型检测

    背景: 都知道js内置的类型检测,大多数情况下是不太可靠的,例如:  typeof  . instanceof typeof 返回一个未经计算的操作数的类型, 可以发现所有对象都是返回object  ...

  10. mysql一些语句

    <!-- 报警量排行按创建时间每月来排行 --> <select id="alarmDaySort" resultType="alarm"&g ...